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ABSTRACT

This report 1s concerned with the realization of RLC admittance
and impedance matrices It establishes necessary and sufficient conditions,
in terms of direct synthesis procedures, for the realizability of nth order
Y or Z ruatrices. %ach independent branch of the resulting structure is
a two-terminal driving-point impedance in series with a voltage source, or
a lwo terminal driving-point admattance 1n parallel with a current source.
Each dependent branch is a two-terminal driving-point admittance or
1mpedance.

Both the admittance and impedance realization procedures are
completely general They are develop2d from, and {ollow, a re-evaluation
of cut-set and tie-set methous of obtaining the admittance and impedance
matrices. These methods are not mention=d by their common names, but
instead are identified by the name ''region'' and ''circuit.'' This is done
merely to place emphasis on the important physical interpretation of the
mathematical processes of analysis. This same interpretation is also
considered to lead to a clearer understanding of the realization process.

In the analysis this interpretation also shows how the matrix mavy be
written by inspection without having to consider cut-set and tie-set matrices

The realizations of the Y and the Z matrices are developed in-
dependently. 1t 1s shown in the formulation of the Y matrix that each and
every entry has an associated plus or minus sign - even zero entries. The
signs of the entries conclusively determine the geometry of the independent
branch voltages. that 1s, the tree, and by so doing set forth all possible

ways 1n which dependent branches may be connected. The ''magnitudes"

SR




of tiie entries determine the actual dependent branches themselves. This
characteristic of the Y matrix is dramatically opposed to the Z matrix
First, half of the Z matrix zero entries have no sign associated with
them. Second, if all the signs are known, the gecmetry of the independent
current branches is still questionable. One predominant cause of these
differences 1s connectedness: The independent voltage branches are con-
nected. while this restriction is not placed on the independent current
branches' hence the signs of the Z matrix deternune only a set of possible
independent branch geometries while the Z magnitudes determine which
set is required. A reduction process applied to the Z matrix then develops
the dependent branches one by one

Following the development of these realization procedures, and
selected examples from them. the matrices under consideration and the
inverse matriccs are discussed in detail. In this discussion, the differences
between a tie-set Z matrix and tlle inverse of a cut set Y matrix are
pointed out as well as the differences between a cut-set Y matrix and the
inverse of a tie-set Z matrix At the same fime the change in network
geometry that results from interpreting a cut-set Y matrix as a multipcrt
matrix and a tie-set Z matrix as a multiport matrix is illustrated
The process of reducing the number ot response variables from the cut
or tie-set Y or Z matrices is then described, along with 1ts physica!l
interpretation. This leads into the analysis of networks containing mult:

terminal elements, which forms the concluding topic in this study.

-viil




I. INTRODUCTION

A basic discipline in modern network science revolves about the
interpretation and utilization of the geometric properties of a network
These properties involve both the structure of the network and the place-
ment of elements within the network structure. The emergence of this
discipline was accompanied by a variety of descriptive titles that have
recently been narrowed down to the theory of linear graphs. The present
theory of linear graphs finds a wide variety of applications in network
analysis and realization. In general the material encompasses a wide
variety of approaches and is presented in many levels of difficulty. For
an excellent surveyv of such literature as it applies to electrical network
theory, the reader is referred to S. Seshu and M. B. Reed.1 To be able
to approach the subject matter of this study, the reader should be familiar
with the terms ''branch, ' '"'node, '' ''graph, '' ''tree,'' ''co-tree,'' ""chord"'
or "'link, '" ''cut set,'" ''tie set,'' and '"'oriented graph.'' Brief definitions
oi these terms are given in Appendix A, and more explicit descriptions
may be found in Seshu and Reed.1

The principal object of this thesis is to present new methods of
analysis and synthesis for linear bilateral networks based on topological
notions. Firsl, several of the above concepts are discussed from the
admittance and iinpe:dance viewpoint. Following th's discussion, the analvsis
and synthesis of nth order admittance and impedance matrices corresponcing
to networks having n independent branches 1s presented. The discussion
concludes with the analysis of networks with incorporated multiterminal

elements.




The two basic elements in the network topology are the node and
the branch. In this study, a network branch, or simply a branch, is
shown in its most general form in ¥Figure 1. Note that a voltage source

+ <

R F i

J\C) )

Figure 1. Generalized Branch. (Response variables: J = branch current,
V = branch voltage; Excitation variables: [ = branch source
current, E = branch source voltage.}

in parallel with an impedance must be considered as two branches in
parallel, and that a current souice in series with an impedance must be
considered as two branches in series. The branch as shown may, in
essencc, be considered as a network itself, if one considers every physical
element as a branch. In this discussion, howcver, the branch plays the
role of a distinguishable two-terminal device. In line with this, the nodes
are considered as the accessible terminals of a branch. The reasoning
behind this distinction will become clear in the realization™ procedures

of the following chapters.

x . . .
Realization has comec to be colloquially synonymous with synthesis,

although synthesis includes both problems of approximation and realization.




When a collection of branches and nodes are brought together, the
resultant structure is called a graph. In analyzing the response of a net-
work to its exciting sources, the branches of the network graph are divided,
according to Kirchhoff's laws, into two sets: a set of dependent branches
and a set of independent branches. To be more precise, if the response
is desired in terms of branch voltages, a set of independent voltage branches,
which comprise a tree::< of the network graph, are selected and the com-
plementary set of branches is termed dependent. This complementary
set is dependent, however, only in so far as voltage analysis is concerned,
since it exactly comprises a set of independent branches that form a co-tree,*

if the response is desired in terms of branch currents. Here, it is interesting

to note that if the graph G is separated into two subgraphs G, and G

1 2

the separation can always be done such that Gi is planar,2 but not in a
manner such that both 01 and G2 are planar. This follows from the fact
that the maximum number of nonparallel branches in a planar network
containing n nodes is 3n-6 (see Appendix B). Since the independent
vultage branches form a tree, and thus a planar subgraph, nothing can be
said for the generalcase regarding the planarity of the subgraph of inde-
pendent current branches.

In the analysis and realization problem, it is immediately apparent
that a direction or orientation must be assigned to the independent branches,
and such orientation will affect the signs in the pertinent Y or Z matrix.

In Chapters II and III this is illustrated and emphasized, and is recognized

. 2 . 2 m_ .
after a re-evaluation of cut-set and tie-set methods of obtaining the

B

See Appendix A for definition.




short-circuit admiitance and open-circuit impedance matrices. These
methods are not referred to by their common names, but instead are
identified by the names ''region'' and ''circuit.'' This is not intended

as a change in terminology; it is used merely to place emphasis on what
the author considers the important physical interpretation of the mathematical
processes of analysis. The same interpretation is also considered to lead
to a clearer understanding of the realization process. In fact, it is the
realization process that is emphasized in this study. More precisely, it
is concerned with the necessary and sufficient conditions, in terms of a
direct synthesis procedure, for the realizability of an nth order Y (or Z)
matrix by a complete set of n independent voltage (current) branches and
a4 necessary and sufficient set of dependent voltage {current) branches,
where each branch is a two-terminal device as already mentioned.

The realization of the Y and the Z matrices are developed inde-
pendently. A slight reflection of the matrix characteristics shows how
such independence seems desirable, if not necessary. As we shall see,
each and every entry in the Y-matrix formulation may be said to have an
assoc.ated positive or negative sign — even zero entries. These signs of
the entries completely determine the geometry of the independent voltage
branches (that is, the tree) and by so doing set forth all Dossible wavys
in which the dependent voltage branches may be connected. The possible
dependent branches are the ﬁn?'—i-)- branches determined by the n+1
nodes of the network tree, as illustrated in Figure 2. The only exception
to this statement is the case where a set of tree branches forms a linear
subtree, with no other tree branches incident to the internal nodes of this
linear subtree. In this case, the order cannot be determined from the signs
alone; regardless of their order, however, the tree geometry is essentially

invariant.
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Figure 2. Examples of Branch Geometry Corresponding to a Particular
Y Matrix: (a) Possible Signs of Entries for a Y Matrix;
(b) Corresponding Network Tree; (c) Possible Dependent
Voltage Branches.
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Figure 3. Possible Co-Trees for a Network with All Signs of the Entries
in Its Z Matrix Positive: (a) Possible Signs for Entries of
Z Matrix; (b) Five Corresponding Structures of the Independent
Current Branches.




This characteristic of the Y matrix is dramatically opposite to
that of the Z matrix. First, it is strongly suspected that a zero ontry
effectively has no sign associated with it.™ Second. if all the £1gns are
known, the topology of the independent current branches 1s still questionab'.
As an example, consider the fifth-order Z matrix having all signs posit:
Five network structures, each having an independent current branch geom-trv
that agrees with such a Z matrix are shown in Figure 3. Ore main rea-on
for these two differences is connectedness; the independent voltage brarch.-
must be connected, while the independent current branches need not be
connected. Hence the signs of the Z matrix determine only a set of
possible independent branch geometries. while the Z entry magmtudess
determine whicn particular geometry is required

In the next chapter we shall focus our attention on the Y matrix

and in the third chapter we shall consider the Z matrix

N : . 0
It has recently been learned that half ot the zero entries have an a--o "t
stgn, and half have no associated »ign.




II. SHORT-CIRCUIT ADMITTANCE MATRIX

2 1 Analysis

Consider the network graph of Figure 4 where the lines (branches)
represent elements (R, L. and C, excluding mutual inductance), which
are numbered arbitrarify and which meet at the junctions or nodes. In
line with common practice, assign branch current directions and select
an arbitrary tiee such as indicated in Figure 4 by branches 1, 2, 3, and 4.
For a particular branch. the direction of branch current flow is opposite
to the direction of branch voltage rise.as indicated by the convention adopted
in Chapter I, Figure 1 The tree branch voltages (that is Vs Vor Vg
and v4) become the set of indepcndent branch voltages and Appear in the
final short-circuit equations of the network.

Now imagine welding a loop of "‘chain'' to each tree branch and
allowing the loop to assume a position such that each loop of chain nrosses
a branch only once and crosses one and only one tree branch as is
illustrated in Figure 5. The only tree branch crossed by a chain is the
one to which that chain 1s welded These positions are not altogether
arbitrary, for reasons that will become apparent later. However, for the
present, assume their pos:tions arbitrary under the stipulation that each
loop of chain crosses only one tree branch

This ' chain concept""\ 1s a justifiable tool and its great usefulness

This concept of using a chain to define the branches of a cut set was first
conceived by Professor N. DeClaris in 1954 and subsequently introduced
to the author in 1959.
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Figure 4.

Figure 5 &xample Network Graph with Regions Identified.
(Dashed lines define the various regions.)




becomes apparent later. For the present however, the most important
concept is not the chain, but rather the inner ‘'region'' for which the chain
forms the boundary. The resultant short.circuit admittance matrix develops
from applying Kirchhoff's current law to the currents entering and leaving
these regions.

In Figure 5 the example regions are labeled and the branch excitation
currents and response voltages are identified. Notice how each branch
current enters one and only one region. The current for branch 1 appears
to enter both region 1 and region 2. This is true, but since it not only
enters region 2, but leaves region 2 as well, it can be considered as not
having entered region 2 at all.

The facts describing the network and its regiuns are presented in
the Region Table. FEach eniry in this table is -1 if the branch current
enters the region according to the assigned direction, +1 if the branch

current leaves the region, and 0 if the branch is totally inside or outside

the region.

Region Table

1 2 3 4 5 6 7 8 9
Region 1 +1 0 0 0 +1 0 0 0 +1
Region 2 0 +1 0 0 +1 +1 0 -1 +1
Region 3 0 0 +1 0 0 0 +1 +1 -1
Region 4 0 0 0 +1 -1 -1 -1 0 0




The columns cf the Region Table relate the branch voltages in terms of

the independent branch voltages. When one considers the table as a matrix,

this means that

- - _ .
Vi vy 1 0 00 1 0 0 0 1
V2 \2 0100 1 41 0 -1 4

v = , ' , a =

v, 00 10 0 0 1 1 -1
v, 00001 -1 -1-1 0 0]
V9 ST

The rows relate Kirchhoff's current law to the regions in so far as the net-

work branches are concerned. This means

aj=0 , 2)
where
_jﬂ
J2
j =
Js

The generalized branch equation,

JtI' = y(v+E" ) (3)

-10-




where

= = _ —
11' E) Y4
I'& E‘Z Y 0
I! = o 150N . and y =
0
I! E’
Lol ™9 ] B "9

together with Equations (1) and (2) yield

aj+uI':o.yatVTo.yE' , (4)

aI‘-qu':I:uyutV:YSCV , (5)

where the equivalent current sources acting in the independent branches,

. . . . . .th
and where y; is the driving-point admittance in the i~ branch. In

. sc . . . .
Equation (5), aya, = Y is the common complete short-circuit admittance

the response of the network in terms of the independent branch voltages.
It is called a short-circuit admittance matrix because the 1j entry

sc _

Yl_] = Ii/vj with all Ik;fi assuming such values as are necessary to

set all Vk;fj = 0. When these conditions are fulfilled, all tree branches

e




except the jth branch may be short circuited without disturbing the state
of the network.

For a better understanding of these concepts, carefillly exaimine
the Region Table, Figure 5, and the admittance matrix v%¢. This study
. sc
involves the Yij entry and shows:

1) v3°¢

% is a unique sum of branch admittances Yy -

2) The several Vi appearing in the 1) sum, Yisjcl are the
admittances of those branches that enter and/or leave both region i and
region j.

3) The signs of the Vi comprising Yisjc wiil be plus if the branches
enter both or leave both regions i1 and j (such as branches 9 and 5 with
respect to regions 1 and 2), and will be minus if they enter one anc lzzave
the other region (such as hranches 9 and 8 with respect ta regions 3 and 2).

4) If region i and region j are separated or disjoint (such as
regions 3 and 4), all the involved branches (branch 7) have to leave one
region and enter the other region.

5) If region i includes region j, or vice versa, (such as regions
1 and 2), each of the involved branches (branches 9 and 5) has to enter
both regions or leave both regions.

6) Fromsteps 3, 4, 5, all the several Y1 comprising the sum
Yisjc will have the same sign.

7) 1f branch i is a tree branch, then A will appear only in the

sc

Y., sum.
11

The conclusion drawn from the above is that given the network, its tree
and the regions (and thus necessarily, as we shall see, the independent

branch response voltages and excitation currents), the admittance matrix




is then known. Neither the dependent branch voltage directions nor the
current directions or tables nor intermediate equations are necessary in
the unique determination of ¥v%¢ for the prescribed network.

At this point some of the obvious questions about ‘'arbitrary
assignments'' should be answered. The quantities under scrutiny are
shown in Figure 5. Note that each ''chain'' encircles one and only one
of the nodes of the tree branch it is associated with. The example chains
have been numbered according to the branch each chain is associated with,
or '"'welded'' to. The branch quantities V and I must "'attack!'’ the
encircled node. or both be reversed for all branches simultaneously. If
only the V {or I} directions are changed a minus sign will enter Equation
(5) with the effect of destroying the signs of v°¢ so that Y®°€ # yS°© .

- t
Figure 6 shows most effectively how Ii is injected into the ith region.
Thus, once the regions are drawr, the indegpendent branch currents and
voltages are aulomatically specified. The question of arbitrary assign-
ments now involves only the determination of the regions. Each chain
may specify two regions, that is, it may be thrown to the right or to the
left. Whatever way 1t is thrown has made no difference in everything
discussed up to now When one attempts to go i1n the opposite direction.
howevar. (that is, given Ysc determine the network), it becomes con-
venient to add the stipulation that no chain may cross another chain.

Theorem. Given any tree. it1s possible to ''throw the chains''
(specifying the regions) such that no two chains cross each other.

Procf: Every tree has at least two ends. Throw these two end
chains away from the tree (for example consider chains 1, 3, and 4 in

Figure 6). Next consider each thrown chain the tree branch it crosses,

-13-




and the encircled node of that same tree branch as an end node replacing
the unencircled node of that tree branch. Now throw two more end chains

and so on, reductio ad absurdum.

This helps clear up the questions concerning arbilrary assignments
One other condition must be pointed out. In the preceding discussion no
direct statement was made restricting a branch admittance to a single
R, L, or C element. There is no restriction, A branch admittance A
is the driving-point admiattance of that branch considered as a two-termiral
network; therefore the example that has been carried through. could in
effect, be a 19-, 50-, . . . node network presented as a five-node network
For example, consider first the network in Figure 5. The signs

- scC
of the elements comprising Y are:

e . (6)

Here the matrix of the signs of Y®® is denoted by Yzc. The sign of
sc . . . . . . . . . . SC
Yij is minus if region i and region j are disjoint. The sign of Y.,

is plus if region i contains region j or vice versa. By inspection the

sc
elements of Y are:

5C oy, t Y.ty
11 g ¥ Y51 Yg

<
1

SC
s5C

-14-




Yyq = yg)

YZ% = (y9+y8+y5+y2+y6)
Y3 = (yg + Y8)

Y24 7 g+ el

Y33 = g ¥ ¥g * ¥7 + ¥3)

Y3q = (yg)

Yaa = o 2 yg vy Ty,

. . sc . .
with the sign of each Yij as sect forth in matrix (6).

Consider Figure 6 as a second example. This is the same network
as Figure 5, but the chain defining region 2 is thrown in the opposite manner.

For Figure 6,

PR

e -4+ o+

Yo =)- 4+ - ' (8)
-+ -

By inspection. the elements are the same as all elements in Tquation (7)
with the signs as set forth in matrix (8). This is as expected since regard-
less how the chains are thrown, each chain will cross the same set of
branches. Note how the throwing of chain 2 in the opposite direction changed
the reference direction of V, and IZ' Note also how sign matrix (8) may

2

be obtained {rom matrix (7) by raultiplying row 2 and column 2 of matrix (7)

-15.




Figure 6. Variation One on Example Network Graph.
(Dashed lines define the various regions.)

Figure 7. Variation Two on Examplie Network Graph.
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by -1. The effect of reversing the direction in which chain i is thrown
is to multiply row i and column i of y*°© by -1. This does not alter
the symmetric property or positive diagonal property of voe.

If chain 1 in Figure 6 were thrown in the reverse manner along

with chain 2, then the sign matrix for the resulting Figure 7 would be

+ + + +

scC + 4+ 4+ +

Y

s R P (9)
ARG

For a more complicated example, see Figure 8 where the branch

current and voltages have been omitted. (This is acceptable since their

directions are implied by the regions.) IFor Figure 8:
+ o+ - -
- e
vse |- -t - -
s - -+ + - - (10)
- - e -+ 4
- - - -+t

The examples selected have been largely arbitrary. It is worth
while to include two more examples of very specific types, the ''star''

[

tree and the ' linear’'' tree. The star tree with all regions disjoint is

shown in Figure 9 and its sign matrix is:

Y = . (11)

The linear tree with all regions containing one another is shown in Figure 10

17-




Figure 8. Second Example Network Graph.

Figure 9. Star Network Tree.

Figure 10. Linear Network Tree.
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and has a sign matrix:

(12)

w
+ 4+ 4+ + 4+
+ 4+ 4+ + + +
+ 4+ 4+ + + +
+ 4+ + + + 4+
+ + 4+ + 4+ +
4+ 4+ o+ + 4+

The reason for their inclusion along with their generalizations should be
obvious. They are two geometrical ''limits'' in the series of trees.

A natural question arising in this study is: When a short-circuit
admittance matrix is specified, can the corresponding network be obtained?
This is a difficult questicn to answer and must be broken into phases.
First, in the simplest case assume that one takes a network and obtains
a Y®% matrix in the manner just described. The network may then be
obtained using only the Y®® matrix. Furthermore, the Y ° matrix
may be altered by any combination of symmeatric elementary operations
without affecting the realizab:lity of the network Elementary operations
are: {1) multiply any rows and corrcsponding columns by -1. and
{2) rearrange the rows and corresponding columns.

This analysis discussion concludes with an interesting observation
concerning a tree and the set of ''chains'' related to that tree. When
considering the trce by itself, thc chains. which define the regions, may =
be interpreted as the dual of that tree. This is easy to visualize by con-
sidering the normal process of constructing a dual network. During this
construction, each branch of the criginal network is associated with or

'"crossed'' by a single dual branch. Since the tree branch current is

identically zero, the terminals of the dual branch may be joined so that

-19.




its branch voltage is identically zero. Joining the two ends of each dual
branch identifies it withthe chainofits dual tree branch. Connectedness

of the tree is retained in the dual graph by allowing the chains to touch
but not cross, in the manner stipulated by the tree geometry. For an
example of this, see Figure 11. It is also worth while to note that since
the co-tree is not necessarily planar (see Chapter I) it will not have a dual
graph in general. Therefore this observation is not expected to carry

over into the impedance analysis of Chapter III.
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Figure 11. Construction of Network-Tree Dual. (a) Network Tree.
(b) Network Tree with Dual Branches. (c) Network Tree
with Dual Branches Short Circuited.
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2.2 Direct Synthesis of a Completely Specified Y®¢ Matrix

The process of building the ‘ree and then the network from a given
y ¢ (and thus Yzc) hinges on the concept of two chains acting as one.
Tweo chains, say i and j, act as one when the signs in row 1 and j of
Y:C are identical with the possible exception being the ij entries. The
ii and jj entries are naturally plus and the ij and ji entries are plus
if they are concentric, and minus if they are disjoint. When two chains
act as one, and are concentric, the tree branches they cross form a linear
subtree as indicated in matrix (6) rows 1 and 2, and Figure 5, branaches
1 and 2. When two chains act as one., and are disjoint, the tree branches
they cross form a star subtree as indicated in matrix (6) rows 3 and 4,
and Figure 5, branches 3 and 4. Regardless of the size or shape of the
tree, there are at least two sets of chains acting together. Figure 8 and
matrix (10) are another obvious example of this eifect.

This concept of linear and siar subtrees must be extended even
further. Elementary linear and star subtrees are shown in Figure 12a
and 12b. Chains i and j act alike and thus the corresponding rows i
and j must be identical as far as the rest of the network is concerned.
Conversely, if rows 1 and j are alike except for the ij and ji entries,
these rows correspond to linear or star subtrees, depending on the sign
of the 1j entry. More generally, two subtrees may be considered con-
nected in the linear or star fashion shown in Figure 12c and 12d. Here
the entries in all the rows corresponding to branches in the tree section i
can be made identical in so far as the rest of the network, section j, is
concerned. Conversely, if a set of rows are alike, except for those entries

showing the interrelationships within that corresponding set of branches,

_214-
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Figure 12.

Subtrees (a) Linear Elementary Subtree, (b) Star
Elementary Subtree,

(c) Linear General Subtree,
(d) Star General Subtree.
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that corresponding set of tranches must form a subtree that is connected

he rest of the network in either the lirear or star inethod of Figure 12¢

1o

o+

and 12d.

When two branch chains act alike and their relationship to one
another is known, onc¢ of the corresponding branches may be ignored:
that is, all of the signs of one corresponding row are redundant as far as
the rest of the netwerk is concerned Since this is true, the rows may be
merged into one with the physica! effect of reducing the number of branches
in the tree. In other words, the size of the tree is reduced. Repeated
application of this process 1s the means for producing the tree for a given
sign matrix. Fcr a better understanding of this process. visualize a tree.
Consider each branch as a subtree or section of a tree. Gradually allow
these sections to grow and thus absorb one another until, in the limit,
Figures 12c or 12d result. This 1s the =ffect of gradually merging rows
in the sign matrix. If this process :s interrupted. thus indicating a contra-
diction. the tree does not exist

This process of building a tree will be further explained in conjunction
with the example shownr in Figure 13 where the original complete sign
matrix 1s Figure 13a. Start by removing all redundant rows correspondir.g
to concentric chains or linear portions of the tree (Figure 13b). These
chains act alike and thus the doubly (or 1n genera! multiply) numbered
branches (rows) are considered as single branches during the remainder
of the process. Next remove all redundant rows that act alike and correspond
to disjoint chains (there must be at least two of them), and draw these star
like ends of the tree. During this stage and the following stages., whenever

two rows are comparsd any of the columns whose corresponding rows
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123456789
1 +++++++++

2 +++++++ -4

3 4+ +4+4--4+-+4++

4 +4+-++-+++

5 ++-++--++

6 + 4+ + - -+ -4+

T +4+-4--4+++

8 +-++++++ -

9 +++++++ -+

1 ++++++4++ 4+
29 +++++++ -+

36 +++- -+ -+ +

4 ++-++-+4++
5 +4+ -4+ --++

T ++-+--+++
8 + -+ ++

1+

123456789
+++ A+ttt

1
298 +++++++ -+

4 ++-++-+++

36 +++- -4 -+ +
57 + + -

C.

++ - -+ ¢

123456789

+++++++ -+
36 +++- -4 -+ +
574 ++-++ - -+ +

2891

d.

29

123456789
I

2981
57436 ++ -+ + - - + ¢

Example of Network-Tree Realization.

Figure 13.
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have been deleted may be 1gncred if one of the comparing rows 1s doubling
for that deleted row. For instan~e when “omgar:ng rows 29 and 8
column 9 may be 1gnored since row 9 was deleted and row 2 :s decubhing
for row 9 (see F:gure 13c). This basic process iust repeats 1itself, and
every time a row is deleted that branch is added to the draw:ng. In
Figure 13d. row 4 has been d=!eted and branch 4 drawnr linearly with
5 and 7. and similarly branck ’ linearly with 29 and 8 In Figure 13e
branch 36 has besn added star-like with branches 5. 7, and 4 At this
stage. the tree has been reduced just as in Figure 12c¢ In Figure 13f
the two halves have been brought tog=ther and the tree geometry has been
completed

This is a once-through process if at any stage there are no two
rows that act alihke ilien there 1s no corresponding tree for that sign matrix.
When one of two rcws 1s to be delet>d during the process, 1t 1s immaterial
which row is deleted It may also b necessary mentally to multiply a row
and a corresponding cclum~ by ' to determir: two rows that act alike
Thkis is illustrated in a <econd example F:igur= 14  Sign matrix (13) has

becn included as ar exampl= where no ~orrespondi~g tree exists;

+ 4+ + +
+ 4+ o+
ST .
NG I + (13
- + +

After the tree corresponding te¢ a given admittance matrix has been
produced the equations relating the branch admittances with the matrix
¢lements are immediate for example sc= Equations (7). From these

eguations one may ascertair the realizability of the elements. It 1s important
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123456789
1 +4++--+4++ -
2 +t 4+ 4+ -+ -+t 4
3 +4+4+-4+--4+
4 - - -4+ 4+---+
5 -+ ++ 4+ ++4++
6 + - --++-- -
7T ++--+-4+-+
8 +++-+--++
9 -+ +++-4+++
12345061789
14 ++4+ - -+++ -
2 +++-4+-4+++
38 ++4+-4+--++
5 - +++++4+++
6 +---++4+-- -
7T ++--+-4+-+4
9 -+ +4+ 4 -4+ ++
123456789
14 b4 b - -0k -
2 +++-+-+4++ T T
387 4+ -+ - -+ 4+ 6 38
56 -+ ++++ + 4+ + o-——cL——— _—
9 -4+t + -+ ++ S 7
123456789
14 ++4 - -+ ++ - ‘ T
3872 ++ 4+ -4 - - + ¢ S) 58
569 - ++ ++ ++ ++ --- o———b——0—~ -~

3 o]
14569 + ++ - - + + + - e !'4 38
3872 +++ -+ - -+ + o—J)—g - > 5 ——_—

[€N]
@
n
w
D

Figure 14. Second Example of Network Tree Realization.




to note that all the Y;jc entries 1n the complete short-circuit admittance
matrix must be driving point admittances. This points out one of the
ditficulties in discussing the realization procedure only in terms of resistive
networks. Any Y matrix of a resistive network automatically has driving-
point functions for each and every entry. This follows since there is no
difference between driving point and transfer functions of a resistive
network — each is merely a canstant  This, hawever does not hold far
any Y matrix of an RLC network. because there is a definite distinction
between transfer and driving-point functions. Therefore, throughout the
description of the Y®¢ realization each entry Yisjc must be a driving-
point function multiplied by its associated positive or negative sign. Undcr
this sitipulation, the preceding and following realizations are not restricted
to resistive networks, but are valid for general RLC networks. In the
comments and general realication procedure that follows, however, the
entries or ''‘'magnitudes'' will be referred to as though they were resistive
constants in order to make the theory easier to understand. Whenever an
important distinction between the resistive case and the RLC case arises,
this distinction will be pointed out and discussed.

In conjunction with the realization of a complete shert-circuit
admittance matrix, consider the linear subtree, branches 2 and 9, in
Figure 13. In proceeding from step e to step f these branches may be
ordered in one of two ways. Although the proper order will reveal itself
automatically through the magnitude squations, it is more convenient to

order them . ~operly during the transition from step e to step f. The correct

order is learned by comparing the magnitudes of Y;i and Y;i where k
is any other branch i Y;;{ is the larger then branch 9 is closer to

STl




branch k than branch 2 is. 1n Figure 13, Y;i will always be the larger
This general characteristic becomes obvious upon considering Figure 12
In Figure 12, the order of branch 1 and branch j is specified by the
magnitudes of Yfl: and Yjslf where k is any branch in the right or left

extension. Let k be contained in the left extension. Since the magnitude

(e

of Yis is the sum of all admittances cut by chains k and j, and since

=

Y

all branches cut by Clhiains k and i are also cut by chains k and j but

not the reverse, the magnitude of YJSIS must be equal to or larger than the
magnitude of Xlslf Should the magnitudes be equal for all k in both ex-
tensions, then only branches i and j meet at their common node in the
complete network and their order is arbitrary. This comparison of
magnitudes seems at first to apply only to resistive networks. It can easily
be interpreted for RLC networks, howcver. The concept that Y?J.C is
larger than YIS_(S: means that Yisjc 2 Yls_g for singie-element kind networks
only. When Yisjc is a general positive real network function, then the
concept Yisjc is larger than Yi(s: means that YisjC D) Yi(s:': which is equi-
valent to saying that Y':J.C - If_z is also a positive real network function.

The preceding method is a very quick and easy method which is
guaranteed to be a once-through process in realizing the network. 1t tests
for realizability through producing the network itself. Its primary appli-
cation lies in realizing a network from a given complete short-circuit
admittance matrix in which the vast majority of the entries are specified
positive real network functions times + 1.

When the given matrix is large and contains several ''arbitrary’
unspecified entries, a more sophisticated approach is desirable. In such

an approach, itis necessary to ''preamble'' (that is, analvze and rearrange)

the problem before proceeding with the realization process. On the basis
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of this, the following procedure is presented as a completely general
solution of the problem  Rather than build the network tree directly, one
rearranges the elements of the matrix and places them in such an arrange-
ment that the corresponding network tree is as visible in the matrix as it

would be if it were drawn on paper.

2 3 Realization of Y°C with Zero Entries

A difficult problem in modern network theory has been that of
reducing a given nth order short-circuit admittance matrix to a realizable
network. Although the entrance of unspecified ij entries into the matrix
may reduce the number of resiraints between various entries, such
‘tarbitrary'' entries tend to complicate this synthesis problem. This
complication arises because the answer to the realizability problem is
no longer a straightforward ''yes'' or ''no,'' but rather is a ''no'' or a
conditional ''yes,'' where the conditions depend on the many restrained
assignments of values to the unspecified entries. It should be obvious
that snurh an assignment critically affects both the realizahility and com-
plexity of the final network.

In presenting a solution to this general problem, we break the
problem into two parts, the first dealing with the matrix of the 1ij entry
signs, and the second dealing with the magnitudes of the entries. The
signs a.re referred to as Sij’ the sign matrix as Yzc, and the magnitudes
as simply yij' Thus y]j represents the positive sum of branch admittances
that are crossed by both the chains defining the 1 and j regions, and
isjc E Sij yij' Whenever yij is said to contain Vi, ©OF Yij ) Yy ? all
branch admittances comprising the sum Vi, (Fre present in the sum of

terms comprising Vi -

J




The first problem concerns Yzc and its corresponding network
tree. Before developing thc characteristics of Yzc, however, a few
comments on terminology are necessary. Where it is necessary to dis-
tinguish types of trees and subtrees, the following will be referred to
(see Figure 15):

1. Maximal Tree: With regard to a particular netwark, any tree
that contains every node of the network is a maximal tree

2. Minor Tree: A subtree that can be completely severed from the
maximal tree by splitting one node exactly in half is a minor tree.

3. Minor r-Tree: A subtree that can be completely severed from

the maximal tree by ''splitting'’ r nodes in half in a minor r-tree.

e 3 o 4

(a) ‘5/\8 ?1 8 /\I0 1
_ 12

9 3

4

(b 5/\(35 I? ;\ I
d 12

13

3 4

(C) o I © I — 0 o e Yol

(d) ° :a//M\\\ED &

Figure 15. Examples of Subtree Types: (a) Maximal Tree; (b) Minor Trees
(c) Minor 2-Trees; (d) Minor 3-Trees.
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Liet us now examine the characteristics 1nvolving any two branches
in the maximal tree, say b1 and bn' I'rom the implicit characteristics
of a tree, there is a unique linear subtree connecting b1 to br1 such that
b1 and bn define the two end branches in this linear subtree. This
general case is shown in Figure 16a where the linear subtree branches
connecting b1 to bn are termed Section A2 and where the minor trees
connected to the linear subtree nodes are termed Section Ai’ Section BZ’
Section B3, ..., Section Bn’ and Section Arl respectively proceeding from

left to right as indicated. Assume that all tree-branch chains are thrown

in the convenient manner indicated in Figure 16a such that:

1. All chain-defining regions of Section A1 are contained in

region b, and are disjoint from region bn'

1

2. All chain-defining regions of Section Ar1 are contained in

region bn and are disjoint from region bi‘

3. All chain defining regions of Section AZ contain either region

b or region b, but not both.

n

1
4. All chain-defining regions of Section B, are disjoint from

hoth region b1 and region bn,

. sc . L :
Under these assumptions, YS takes the partitioned form of matrix (15).
(A complete, simplified partitioned example is shown in Figure 16b where

n has been set equal to 6 ) In matrix (15),
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b1 4 -
b -+
n
+ o
A1 :
+ -
- |+
A
n
SRR
sc )
YU = + (15)
+ o
o
- 1+
- 1+
B

only the signs of immediate interest are indicated. In analyzing matrix (:5),
note that the branches may be grouped into two sets:
Set 1, where all branches i have s,. = s_.;
11 ni
Set 2, where all branches j have s,. # s . .
1; nj
This grouping vyields
Set 1 = Sections Bi = Section B ;

Set 2 = Sections A,, A,, A , and branches b, and b_ .
1 2 n 1 n

No elementary operation will destroy this grouping. One group will alwavs

consist only of Section B, while the other group contains the remainder

regardless of how the chains were thrown. The most important element




(a)

s R e e
- ~ -~ ~
/ 8 N ~ Y e N
17 o N 7 RN
N ]
’,/ 4 L\~ — o 2\ Da\ e —a / bn o £ =0 N
oy \ VoA D A / \
2 [
Vo | \ I \
! |
1\\ , I \ I\ \ k oy II
\ \ \ | v gy 0\ \ AR R VR /
Lix. o \ VS0 Ny foy ooy oyl I TR \ / /
RN, \ A | L ! LA,
'\ A LT By, Bs / Bg Bnot ' Bn STy
A Ve R / / N /
\\ R 7 - d \\_,—/
(b)
b1 + + - - + - = - - T
b + + -] - - + + - - - - -
by |+ | -] =t - + + + - - - -
b4 = -+ + 4+ itz i3 +
= = = s +
b +] 0+ 0+ + N
b, - N N - - - -
| i
Ay + + ] TA - - - -
1
;
B - + 1 - T - - -
2 ‘ B,
B + | - ; T - - C
3 B, B
B - - - - - T -
4 B, B
By + - - TB_ -
e D —
B - 3 T = = £ ’ T -
6 B, _
A6 - - + + + - - - - - TAé
Figure 16. General Tree (a) and (b} Example Y% for n=6. {(Heavy
line in general tre=e diagram represents Section AZ')
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1in this process is Sin’ since it determines which set is Section B, and

which set is Section A,. A

1 2 and An. As for the limiting case, if Set 1

is void, then branches b1 and b form a linear minor 2-tree together
with Section AZ; if Set 2 consists only of b1 and‘ bn’ ihen those two
branches have a node in common and {orm a star subtree. In either of
these limiting cases, b1 and bn may be merged appropriately. Thus
in a sign matrix, two rows, 1 and j, effectively partition the sign matrix
as indicated in matrix (15) due to the grouping of signs Siy and sjk'
Continue this partitioning by examining the corresponding sign

relations that exist between any branch b, in Section B, and either
1

b

branch b1 or branch bn. Branch bb has been labeled in Figure 17

yielding a grouping, similar to Equation (16), as follows:

Set 1 bi’ bb’ Sections Ai’ A.Zi’ iy

b1 and bb (17a)
Set2 b _, SectionsA , A, , B., B.
n n 2n j ix
Set4 b, b, Sections A , A, , B.
n’ b n 2n iv
b and b_ (17b)
Set 2 bi’ Sections Ai’ AZi’ Bj’ Bix
where
bb € Section Bi ,
Ly
Sections A21 and AZn are those portions of A2 comprising
part of the linear subtree connecting bb to b1 and bn respectively;
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(b)

Figure 17. Example of bb Branch. (a) Branch bb as It Appears in
General Tree, (b) Branch bb as It Appears When bb and
-bi Define the Geiieral Tree.
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Section Biv reprcsents the branches of minor tree Bi that

comprise a portion of any linear subtree that has branches b, and b1

b

or bn as two of its components,

Section Bix represents the branches of minor tree Bi that are

not contained in Section Biv'

Once again, no elementary operation will destroy the grouping of Equation
(17a) or {17b). Note that branch bb , which is any branch in one of the Bi
sections, bccomes any branch in minor tree Bi for this analysis. Com-

bining the results of Equation (17a) or (17b) with Y.*, Equation (15), the

sign matrix may be further partitioned as tollows:

oo | ! 7
b, [+ - o - - - -
o L B A I i
n i l' _
A1 and A21 + - | S1 N - N S3
|
SC ]
YS = An and AZn - + N S2 - N S4
b | - | - - - + + -
B. - - N N + N
1v
B, and Bj -| - | S, S, - N

(18)

Note that Y:C of matrix (48) was developed in two independent ways

simultaneously. First, if the network tree was given with the chains thrown
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correctly, it was immediately known. Second, with just the matrix given,
comparing signs yielded the labeled partitions, after which the signs in
rows bi’ bn’ and bb were lixed to conform with the first method by
multiplying the appropriate rows and columns by minus one. Making these
signs conform guarantees that all chains were correctly thrown. Having
been reduced to this form, matrix (18) vividly presents the first criterion
oy the sign alone - all the signs in the partitions
labeled N must be negative. The appearance of any positive signs in the
N partitions indicates a geometric contradiction, as can be seen from
Figure 16, and hence an unrealizable network.

Sign matrix (18) may be now further partitioned to separate A1
from AZi’ An from AZn’ and Bj from Bix' These separations will
provide the remaining sign criteria for the matrix to be realizable with
respect to sign. The following separation is based on the original assumgtion
that the chains were thrown correctly, an assumption that is guaranteed by
fixing the signs in rows bi' bn. and b, of matrix (18).

b

2. 31 Ay and Asy
All A21 regions contain each other and contain all A1 regions.
Therefore, from matrix (18) any row through S1 having a minus sign in
S1 must belong to A1 along with the corresponding column. Each minus
sign therefcre specifies two A1 branches. This essentially restricts
particular branches from belonging to AZi’ since a branch may exist in
A1 yet have no corresponding minus signs in Si' Any branches that con-
form to this latter situation exist together with b1 as a minor 2-tree

where one of the two ''split'' nodes connects b1 to A21 and the other con-

nects one ot the conforming A, branches to the remaining branches in Ai'
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All A1 regions are disjoint with all B regions; therefore any row

through S, having a plus sign in S3 must belong to A This essentially

1 21

restricts particular branches from belonging to A,, since a branch may

1)

exist in A21 yet have no corresponding plus signs in S Any branches

3"

that conform to this latter situation exist together with b1 as a minor

2-tree where one of the two ''split'' nodes connects b1 to A1 and the

other connects one of the conforming A branches to the remainder of

21

the network.

Any row through S1 having a minus sign in S1 and a plus sign
in S3 represents a contradiction, hence an unrealizable network  This
branch was relegated to the A,1 and A21 partition by celumns bi’ bn.
and bb but is restricted from belonging to A21 by Si, and from belonging
to A1 by S3, therefore the contradiction.

Any rows through S1 having no minus signs in Si and no plus signs
in 33 can be assigned to A1 or A21 only by comparing appropriate Y

J
magnitudes. Branches x illustrating this are shown in Figure 18. These

o
[+

Figure 18. Examples of Branches Requiring Comparison of Magnitudes
to Determine Correct Position.
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branches may be separated by comparing yi] magnitudes in, for example.
column n since Yi4 = Yin 2 Yin' where 1 and k are rows belonging

to A21 and A1 respectively. At the conclusion of this step, matrix (18)

becomes
[l e
— | I —
b -1t I 1 + - - -
R
A1 + - T1 P N - N N
. A21 + 1~ P P N - N 53
Ys = —— — 2
An and AZn -+ N N SZ - N S4
bb - - - - = |+ + -
o E i _—
B. ~1V- N N N + N
iv
| l 1 | l i
| : l ] |
Bix and Bj L—- l - i N S3 § 54 ! - I N | i

(*9)

where the added partition has been drawn neavy the partitions labeled P
contain all pesitive signs, and T1 is the ¢ign partition dealing exclusively

with the minor tree A1

2.32 A_ and A

R) 2n

All AZn regions contain each other and contain all An regions.
Therefore, any row through S2 having a minus sign in SZ must belong
to An along with the corresponding column. Each minus sign thus specities

two An branches. This essentially restricts particular branches from

belonging to AZn since a branch may exist in An yet have no corresponding
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minus signs in S2 and any such branches will exist together with bn as

a minor 2-tree, where one of the two ''split'' nodes connects brl to AZrl
and the other connects one of the conforming A~ branches to the remaining
branches in An.

All An regions are disjoint with all B regions; therefore, any
row through S2 having a plus sign in S4 must belong to AZn' This
essentially restricis particular branches from belonging to An’ since a
branch may exist in AZn yet have no corresponding plus signs in S4,
and any such branches will exist together with bn as a minor 2-tree where
one of the ''split'' nodes connects brl to Arl and the other connects one
of the conforming AZrl branches to the remainder of the network.

Any row through S2 having a minus sign in S2 and a plus sign
in S4 represents a contradiction and hience an unrealizable network. Th:s

branch was relegated to the An and A partition by columns b,, b

2n 1’ “n’

and bb, but is restricted from belonging to A
to Arl by S

’n by S2 and from belong:ng

4’ hence a contradiction.
Any rows through S2 having no minus signs in S2 and no plus

signs in S, can be assignedto A or A only by comparing appropriate
g 4 23 2 2 Yy LY g

yij magnitudes. Branches « corresponding to this situation are shown

in Figure 18. These branches may be separated by comparing yij magni -

tudes in, for example, column 1, since where 1

Vit 2 Yin 2 Yin®

and k are rows belonging to A and An respectively.

2n

At the conclusion of this step, matrix (19) becomes
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b ol -1+ i+ -0 - l .
1 _L } S —
b T T
n A s
| |
A1 + - T1 P: N N}t - N N
— = g
. Ali +1 - P| PN NJy - N S3
¥ - T —+= . o
AZn -+ N NI|P P - N 54
I
A -1+ | N'" NP |T - N | N
n n
bb - - - - - -+t -
B. - - N| N| N + N
iv
- - S N|-| N
Bix and Bj L | I l 3t 4

where the new partitions have been drawn dark, and T_ is the sign partition
L

dealing exclusively with minor tree An'

2.33 B. and B.
j ix

Seccion Bi consists of minor trees to the left of Bi and minor trees
to the right of Bi as shown ir Figure 16. Any row in the Bj and Bi:{
partition with a plus sign in Sq) belcngs to a left-hand B. minor tree and
any row with a plus sign in S4 belongs to a right-hand Bj minor tree.
In addition, if A21 is not empty, then there must be a branch in A21
whose signs in S3 are positive for every branch belonging to a left-hand,
Bj minor tree, and negative for every branch in Bix or in a right-hand
minor tree. If AZn is not empty, then there must be a branch in A2

whose signs in S4 are positive for every branch belonging to a right-hand

Bj minor tree, and negative for every branch in Bix or in & left-hand

-41-




Bj minor tree. Naturally, if A21 is empty, then no left-hand Bj minor
trees exist; similarly if AZn is ernpty, no right-hand Bj minor trees
exist. The converse does not follow. Each branch in Bix must have all
n<gative signs in S3 and S4, and the converse: all rows through S3 and
S, with all signs in S, and S, negative must be a B, ~branch. This
process separates Section B into three parts; a ''central'' minor tree Bi
that is comprised of Bix’ Biv’ and bb, the Section B minor trees to the
left of Bi' and the Section B minor trees to the right of Bi’

Any row through S3 and S4 having a plus sign in S3 and a plus
sign in S4 represents a contradiction and hence an unrealizable network
This row is simultaneously assigned to both left-hand and right-hand minor
trees, an obvious impossibility.

At the conclusion of this step, matrix {20) becomes:

p
b LI R I N ) ) A
1 _‘_-% % | _
b N PR S 5
n |
+__ ’ —
Ay gyt N NIN]N
_.1__.y_ PR - —
Ay | #-yplp NI N"N]s |N
% A _
ve© = A -+, NIN'"P'"P'"N]|]N]s , i21)
s 2n 4
_t._}____ Y —
A 4+, NI N'TPIT I'N}I NN
n n
B, [ - -, nInININTT I NN
Bip | - -, N S NININ|D |N
i | ] _:
B ! NInls ini;n|N]|D
S R :
N 7

where the new partitions have been drawn with heavy lines and Ti is the

sign partition dealing exclusively with minor tree Bi .
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2.34 Bj Minor Trees
In step 3, Section B was partitioned into three parts; a central

minor tree Bi’ a left-hand set of minor trees B and a right-hand

jL’
set of minor trees BjR' This fourth step consists of separating the
minor trees in BjL and BjR' Each one of these minor trees is con-

nected to the maximal tree through a unique node in the A, linear sub-

2

tree. The BjL minor trees are connected to nodes of the A linear

21

subtree and the BjR minor trees are connected to nodes of the AZn

linear subtree. To separate these minor trees, examine S3 and S4
in detail. In matrix (21) the columns through Ay and A, that have plus

signs only for the rows through B and BjR respectively, have been

jL

placed in evidence next to the line dividing A, from A,

s

All the rows corresponding to the unique BjL minor tree con-

nected to a unique Asy node must have the same number of positive signs
in S3. No other minor tree connected to a different node can have that

same number of positive signs per row in S3 .
All the rows corresponding to the unique BjR

on node must have the same number of positive signs

minor tree con-

nected to a unique A
in S4. No other minor tree connected to a different node can have that

same number of positive signs per row in 54 .

These last two statements follow because each of the unique BjL

minor trees connects through a unique node in A and therefore all of

21

each minor tree's regions are contained in a unique number of AZi regions

(plus signs in S3) and disjoint with all other A regions (minus signs

2

in S3). The same concept holu. for BjR

minor trees, A. regions,

2n
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and S4. Thus the rows of BjL and BjR may be ordered according to
the number of positive signs per row in S3 and S4 respectively (obviously
this ordering can proceed according to the negative signs per row just as
well) and partitions introduced to separate the sets of rows having the
same sign per row distribution. This partitioning extends through D1
and D?_ in matrix (21) such that the new diagonal partitions within D1
and D2 deal exclusively with each BjL and BjR minor tree. All of
the new off diagonal partitions in D1 and D2 nmust be entirely negative
if the matrix is unrealizable as to sign. This is shown in matrix (22).
The columns through S3 and S4 can also be ordered because
any Ali columns through S3 with the same number of plus signs in
S3 comprise a linear minor 2-tree. Also, any AZn columns through
S4 with the same number of plus signs in S4 comprise a linear minor
2-tree. This means that there are no Bj minor trees connected to the
nodes that connect the branches of these linear minor Z2-trees together
When the columns and rows of S3 and S4 have been ordered according
to the above, all the positive and negative signs must be separated in the

stepwise manner suggested in matrix (22). All the plus and minus signs

in S3 and S4 must be completely separated in this stepwise manner

or the network is unrealizable. In matrix (22), the BjL minor trees

have been labeled B,, B,, . . ., B. . and the B. minor trees have
2 3 i-1 iR

been labeled Bi+1 . Bi+2 s e, Bn to conform with Figure 16. Cor -

respondingly, the diagonal minor tree partitions are TZ’ T3,

Ti-i’ Ti+1’ Ce e, Tn.

-44 -




(22)

n

i+1
N

Ty

W8N e

N

e r

N

LR N

've

-45-



Thus it is relatively easy to complete the partitioning of the sign
matrix. To place the matrix in a niaster forrn, reverse the direction in
which the b1 and A21 chains were thrown by multiplying partitions b1
and A21 by minus one,and rearrange the partitions to conform more
vividly with Figure 19 resulting in YIS\ZS in matrix (23). In Figure 19

Section A, is composed of branches bZ’ b

2 b

30 By Py g

In Figure 19 we are viewing the general network tree as a com-
bination of several minor trees attached to the nodes of a linear subtree.
Branches b1 and bn specify the extreme branches in the linear subtree.
Minor trees A,1 and Arl are attached to the extreme nodes of the linear
subtree. Minor tree Bi is attached to some node between branches b1
and bn . Section B_jR contains the several minor trees attached to the

linear subtree nodes lying between those that join A, and B.1 to the

i

linear subiree. Section B. contains the several minoi trees aitached

jL

to the linear subtree nodes lying between those that join An and B.1 to

the linear subtree. The reasons for viewing the general tree as pictured
in Figure 19 are very logical. First, from the basic definition between
any two branches there is one unique linear subtree connecting these two

branches. These two branches we have called b1 and bn, and the linear

subtree is uniquely Section A All the remaining branches must exist

2

as sets of trees connected only through A These sets we have called

2

B

A A , and B, where B =B,, B_, ..., .
n 2 3 n

1 3
Two points remain to be discussed. The first concerns the order
of branches in the A1 R An’ and Bi partitions, and the second concerns

the order of linear minor tree branches appearing in the partitions.

Although this ordering does not affect the criteria for realizability based
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(a) General Tree Form and (b) Matrix.
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on the signs alone, it will prove indispensable for realizability as far as
magnitude is concerned and for placing the network tree in more immediate
evidence. First, it is desirable to order the branches in the diagonal
minor tree partitions so that they comprise a miniature reproduction of
the comp.site matrix YISV(I:S’ in which the first row in each diagonal
partition, a branch like bn , corresponds to the branch that attaches
the minor tree to the node in the linear subtree composed of branches
b1 , A2 , and bn . This is very easily accomplished merely by treating
the submatrix composed of the minor tree rows and the closest A2 branch
as the matrix to be ordered, with the A2 branch taking the branch b1
role. The closest A2 branch in this case is either of the two vertical
A2 rows that define the step in the plus-minus staircase where the rows
forming the minor tree comprise the landing

Secondly, it is desirable to order the A2 branches such that the
columns (and rows) read as the branches exist in the linear subtree. The
only problem encountered is that of a linear minor Z2-tree therein. A
linear minor 2-tree is characterized by a set of rows indistinguishable
in sign. To place them in proper order, it is necessary to revert to a
study of magnitudes. If branches 1 ... k comprise a linear minor 2-tre=
within the AZ linear subtree in order proceeding from branch b, to

1
branch bn’ then

V.
ix
and

1),— co ‘g. ka )
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where b_ 1¢ any branch on any linear tree including branches : . b
X

situated on the branch b1 side of 1.. k and by 1€ any branch on any
linear subtree including branches 1 . k situated on the branch bn side
of 1 ... k.

A natural question that arises concerns the necessary number of
partitions. If branches b1 and bn were discretely chosen such that
they met at a common node¢ then the only nonempty partitions would be
b1, bn" A1 s An’ and the single minor tree Bi This 15 the most basic

partitioning obtainable, and it is only obtainable through exercising dis-

cretion in choosing branches b1 ard bn This reduced matrix is, from

matrix (22},

b1 + ot 1 +
+ + = +
sC
Yms = ) - Tar o \24)
+ TBi
+ + TAn

This general reduction cannot be carried lower than five partition: and

there is only one way to reduce the matrix to five partitions., In matr:x

(24), rows b,, b , and B sp=cify all the remaining off diagonal signs
1 - NS b g g 2

here the only remaining s:gn1s th= A1 An entry. At this point it 1<

interesting to compare matrix (24) with matrix (13) Note that the lowest

sc . . .
order Ys that may be unrealizable is also five: e g the came order

as the minimally reduced master sign matrix. If the trees A1 An, and
B1 in matrix {24) are reduc< to single branches. the diagonal entries
automatica’iv become plus signs and the three reference branche: b, b

r

49-




and bb = Bi specify the one remaining sign, which in matrix (13) has been
changed to plus, thus rendering the matrix contrary to the master sign

matrix and hence unrealizable.

2.4 Specification of Zero Entries

A careful analysis of the preceding material points out one of the
characteristics that makes the complete short-circuit admittance matrix
unique. The prominent characteristics, which, as we shall see, are absent
in the complete open-circuil irnpedance matrix, are that the signs completely
determine the network tree topology, and that each and every entry has an
associated sign, even though the magnitude of the entry may be zero. Thus
when an admittance matrix is presented with many unspecified entries, the
correct signs of these entries should be determined first, and then limitations
placed on their magnitudes. In other words, this realization problem has

a very definite analysis phase of its own.

sC
MS

the preceding procedure utilized only a fraction of the total number of

In rearranging a given matrix to conform with Y in matrix (23),
possible signs. Only those signs that influenced the determiration of the

final partitions were used. Once these partitions were rigorously established,
all signs were fixed. Thus the first step in sign assignment 1s to establish
each and every row within a unique partition. This problem may be described
as follows: In the determination of YIS\/E:S in matrix (23) and Figure 19

through the presence of ''arbitrary'' unspecified entries, the established

signs may relegate a branch (row) to either Section B, or B, and yet be

3 4
unable to specify exactly its unique assignment. To specify this row's

unique position, it is necessary to examine the magnitude relationships
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that may preclude 1ts existing 1n B, orin B For exampgle :f this

4

ambiguous row is b, and: v . C Yim does »ot hold fora’™ » 1 m

Kk kj

where b and b are any branches in B_, B . B , A , than b

] m 5 6 2 T k
cannot belong to Section B4 . Although formally requir:ng a very lengthy
and tedious enumeration, such useful magmitude relationships become evident
upon understanding of the pr--cedirg material

Once the partitions are fixed the network tree 15 determined and
the realization of th+ physical el=ments proceeds 1n a straightforward
manner. These elements may be obtained directly as shown :r the first
section of this chapter, or they mav be obtained in an algoritbkmic fashion
by transforming the matrix such that the new network tree is a star trz=
As a star trce, each off diagonal entry is the admittance of a single. unique
branch. This method 15 perhaps more applicabl=s to tomputer svrthecic,
Since the partitioned matr:x presents the »etwork tree in a p»r-=p*:b'e
algebraic manrer, the matrix te transform it into a star -rre~ cornfiguration

is obvious

2 5 Discuscion

The preceding gen«ra' synthesis mathod tor RLC shcrt -i1rcuit
admittance matrices is mcst sseful for large scals prob'em solution and
computer synthesis. This method w:th a differenr :nterpretation also
has been developed ind:gperdentiv for resistive r-tworks by Bior~i a»d
Civaller: 2 Besides presenting an altorrative interpretation and develogp
ment of the general method this synthesis is not restrictad to sing’e
element kind networks but uces general RLC (excluding mutua® :rducta-ce}

networks. The inclusion of thes= three basic ei>=m=nts does ro* ~omp’icat=
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the problem as much as might be suspected. In some cases it may actually
simplify matters since it forces a more articulate interpretation of quant:ties
much of -/hose intrinsic nature is camouflaged in the single-element-kind

discussion.
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1II. THE OPEN-CIRCUIT IMPEDANCE MATRIX

3 1 Analysis

The complete open-circuit impedance matrix is formulated to des -
cribe the response of a network to excitations in terms of a complete set of
independent branch currents. This analysis is identical to the admittance
analysis with the natural interchange of dual quantities. The independent tree
branch voltages become the independent co-tree branch currents. The appli-
cation of Kirchhoff's current law to a current region becomes the application
of Kirchhoff's voltage law to a voltage circuit. In either procedure, the net-
work is represented or modeled by its network graph. When the tree is
specified, the elements of the co-tree. or chords, automatically define a
complete set of independent branch currents. A branch orientation is assigned
to each chord. A voltage circuit, which is defined by an independent branch,
may traverse one and only ore chord and thus the 1th circuit is uniquely
specified by the assigned set of chords and specification of the ith chord.

Consider the network graph of Figure 20 where the lines represent

Figure 20. Example Network Graph with Independent Currents
Based on Co-Tree.
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generalized branches that are numbered and meet at the junctions or nodes
Assign branch voltage directions and select an arbitrary co -tree such as
indicated in Figure 20. (For a particular branch, the direction of branch
voltage rise is opposite to the direction of branch current flow.) The chord
currents (that is, J1 s JZ R J.(.) become the set of independent branch
currents and appear in the final open-circuit impedance equations ot the
network.

The facts describing the network may be presented in the form of
a CircuitTable. Let the orientation of a circuit proceed in the direction
defined by the branch voltage of the independent branch. Then each entry
in the CircuitTable is +1 1if the branch voltage rise is in the direction of
the circuit orientation,and -1 if it opposes the direction of the circuit

orientation. As an example, consider the CircuitTable for Figure 20

Circuit Table

Circuit Branch Numbers

1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16

1 1 0 0 0 0 0 O 0 0 -1 1 0 0 0 0 0
2 0 1 0 0 0 0 O 0 0 1 0 1 1 0 0 0
3 0O 0 1 0 0 o0 O 0 0 0 0 0 1 1 1 0
4 0O 0 o 1t 0 0 O 0 0 0 0 0 0 0 1 !
5 0 0 0 01 0 O o -1 -1 0 1 o -1 0 1
6 0o 0o o o 0t 0 -1 0 0 0 0 0 0 0 0
7 0o 0o 0 0o o 0 1 -1 o -1 -1 v 0 0 0 0
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When developed in this manner, the columns of the

branch currents in terms of the independent branch currents.

as a matrix, this table means that

= Bd
where t stands for transpose, and
—J; 1000000 0 O -
1, 01400000 0 0
;- , 0040000 0 0
B=10001000 0 0
000014100 0 -1 -
9 00000140 -1 1
c T 0000004 -1 0 -

- O O O O O =

ircuit able relate the

Considered

(25)

O O = O O =~ O
O O O O = = O
O O = C© = O O

O O O = e, O O
1
lO O = = O O oJ

The rows relate Kirchhoff's voltage law to the loops in so far as just the

passive network branches are concerned.

This means that

pv =0

The branch voltages may also be written as

where

3]
|

E'+v = z(j+1" s
_ _E' — —I' -
1 1
1
0 EZ
3 E‘ = 1 I' = 3
1
. Llié
Z ' _
16 | E16
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and z is the driving-point impedance in thc ilh branch. Combining

Equations (1) and (3) gives
viE'" = z(j+1I) = zﬁtJ + zI! (28)
Multiplying both sides by B and using relation (26) gives

Bv + BE' = BE' = Bzp J +pzl'

or

BE' - Bzl' = BthJ

Since BE' - Bzl' replaces all excitations by voltage sources in the ind~

pendent branches, it beccomes

E = pzpJ = z°¢ 7 ) (29)
where
-
Ey
E;
E = ,
E7
and where Bz ,Gt = 2°C is the common complete open-circuit impedance

matrix. Here Z°¢ is called complete because it completely describes *h
response of the network in terms of the independent branch currents. It 1s
called an open-circuit impedance matrix because the ij entry Z(i)jc equals
Ei/Jj with all Ek;!i assuming such values as are necessary to set all

Jk;(j = 0: When these conditions are fulfilled, all tree branches except th

j branch may be open circuited without disturbing the state of the networx
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For a better understanding of these concepts, carefully exarmine the Circuit
. . . .o0c ] .
Table, Figure 20, and the impedance matrix Z This study involves the

Z(i)jc entry and shows the following:

1. Z?J.C is the unique sum of branch imnedances Zy -
¢. The several z) appearing in the 1ij sum, Z;)jc, are the impedances
of those branches common to both voltage circuits i and j.
3. The signs of the 2y comprising ZiojC will be plus if the orien-

tations of voltage circuits i and j are alike through branch b and will

K’
be minus if the orientations of voltage circuits i and j are in opposition
threugh branch bk .

4. The Z?jc entry is zero if voltage circuits 1 and j do not have
a common branch voltage.

5. Since the circuits are based on a set of chords (and thus on a
tree), all the several =z

K comprising the sum ZiojC will have the same sign.

6. If branch i is a co-tree branch, then z, will appear only in the

The conclusion drawn from the above is that given any network and a co-tree
(and thus necessarily the branch source voltages and response currents),

the open-circuit impedance matrix follows immediately. Note that orienting
the tree branches has no effect on {1) the circuit orientation, (2) the matrix,
and (3) this analysis.

A tree has many interesting properties that provide the necessary
uniqueness along with the general approach. Here it is appropriate to give
warning of a possible misconception. In the impedance analysis the network
tree is a peculiar artifice. It must be used and considered cautiously

because the voltage circuits form the paramount basis in impedance analysis
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not the tree. The tree is used merely as a convenient and useful tool to
prove many relationships. The tree, however, is secondary in importance
to the co-tree. In this analysis, the co-tree defines the tree, rather than
the reverse, which is the case in the admittance analysis. It is convenient
to use the tree in the following discussion of circuits; however, one should
not be misled as to its importance. Let a co-tree and its tree be selected.
Although a large number of diftferent trees exist in the network graph, each
and every tree will conform to a general form shown in Figure 24. Select
any two tree branches, b1 and b4. These two branches together with their
unique connecting tree path form a linear subtree. This linear subtree will

be called the general linear subtree {(for the selected two branches) to

distinguish it from the several other linear subtrees existing in the tree,

——TREE BRANCHES

----CHORDS
Figure 24. General Tree. General linear subtree = n_, bi’ n,, bz,
n,, b3, ng b4, ng; general minor trees - Mo' Mi’ MZ'

M3, and M4; chords defining Type A circuits = b

chords defining Type B circuits = bB.
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Let this general linear subtree have p branch¢< The romaining tree
branches may be divided into p + 1 groups such that each group forms

a minor tree connected to the whole by one of the p + % general linear
subtree nodes There minor trees are said to connect to the gereral linear
subtree by their trunks. that 1s those branches of a general minor tree
that are incident on a node of the genera! lirear subtree are the trunks of

a general minor tree Let the tree 1n this general form b~ drawnina
planar manrer as indicated in Figure 24 Each of the remairing network
graph branches, or chords. occupies a unique position specified by designating
two nodes. which the chord zonn=ects, in the network tree Ea~zh of these
chords define: an independent bran:h current and voltags cir-uit that tra -
verses that chord and some urique linear subtr=e¢ within the g=reral tree.
Any circuit may be distinguished by designatirg it as:

Type A: A circuit that tiaverses a set of branches b=longing to the
general linear subtree that :s. its defining chord connects two d:fferent
general minor trees.

Tvpe B: A circuit that traverses no branch belonging to the genr=ral

linzar subtree.

.

In assigning orilentations to the chords, it 1s convenient to adopt the conventior
of letting all Type A circuits traverse branches ir the gene~al lir -a» =ubtr==
in the same direction Now the matrix may be produ-ed

Each 1j entry in the matrix contains informaticn ~onc=rning *he
branches common to circuits i and j. If two circuits 1 and j have a
linear subtree in common then the magnitude of that 1j entryis th: sum
of the impedances represertad by that linear subtrse. The sigr of that <ntry

is positive if the two circuits are in ‘rhase'' {same directic~) through that




linear subtree, and negative otherwise. Note that if two Type A circuits
traverse a common portion of the general linear subtree, the sign is positive.
If two circuits have no linear subtree in common, then the entry is zero.
Proceeding in this manner, the open-circuit impedance matrix cau be

written by inspection.

Before proceeding in the reverse direction (that is, obtain the net-
work given a z°¢ matrix} it is worth while to take a close look at certain
characteristics of a set of entries corresponding to a set of circuits. Let
all the Type A circuits (Figure 21) traversing some portion of the general
minor tree M_ be numbered 1, 2,

0

circuit impedance matrix, i, j e (1, 2, ..., r), is positive and bounded

., r. Each 1j entry in the open-

in magnitude {rom below by the impedance of branch b z, . If =z is

1’ b1 b1
subtracted from all ij entries, i, j e (1, 2, ..., r}, the effect on the net-

work in Figure 21 is to superimpose nodes n, and n,, that is, replace
branch b1 with a short circuit or zero impedance branch. In addition
select any square partition Z;; of the open-circuit impedance matrix
such that all the signs of Z;; are positive and such that if any of the re-
maining rows and corresponding columns are included in z°¢ at least one
zero or negative sign is simultaneously included. Then the circuits cor- .
responding to the p rows and corresponding colvmns all traverse a common
linear subtree. This statement will be proven in the theorems following
The concepts considered here are critical because they form the primary
tools in building a network to conform with a given open-circuit impedance
matrix, z°“. We now proceed to prove a numberoflemmas and theorems

concerning properties of the various types of circuits. These theorems

will be used in developing realization techniques.
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oc . . . .
Let Z be an impedance matrix based c¢n the interactio= of a set

of independent circuits {\}, defined by a set of chords {br} that comprise
. - _ on
a particular co tree. For an LLFPB network, it is necessary that Zli

v

can be written,

a. s
1
oc 1=0
le = T iS58 — 3
b. s
J
j=0

where a; . b. 2 0, and s is the complex frequency g + jw. In other words

all entries are driving-point impedances times £ -

oc - .
Lemma 1. Let Z_ . be non-zero Then circuits \1. ard A,

traverse
i)

a common non-zero set of branches and all the branches that circuit \. and

circuit \J. have in common form a linear subtree.

have a “on

LS

Proof. By the definition of Z.?jc, circuits X and X\,

zero set of branches in cornmon. By the definition of a circuit. the onlv

elements of a circuit available for intersection (interactior) with another

circuit form a tree path that is by definition a linear subt»ee. Th=refore,

. oc . . . . .
if Zij is non-zero and all the elements that circuir \1. and -ircuit ),

have in common do rot form a linear subtree, then they must form a set

of two or more linecar subtrees that are rot cornected. If this 1s true. thep

there are two different tree paths, one on \'i and one on .. that conn=c:

-

two different tree nodes, one of each of two of the sets of common lin=sar

subtrees, contrary to the definition of a tree.

1 ocC

Lemma 2. If Z.i is non-zero, then circuits \i and >, can be
T 1

oriented such that the sign of .. is positive
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Proof: Assume Z?jc is negative. Multiply row i and column i by
-1, thus reversing the orientation af circuit )\i. Now the sign of Z?J.C
is positive.

Lemma 3. Let {)\1, Ce s )\n} be a set of n circuits that have the

largest common non-zero linear subtree b)\ . Let each of the circuits

{)\1, R )\n} be oriented such that all the signs of Z?jc, where '\i’

. € {)\1, L, )\n} . are all positive. Then a circuit \_ that traverses
a non-zero portion of each of {)\1, C )\n} can be oriented such that
the signs of Ziopc’ where )\i € {)\1, c, )\n} are all positive, if and only

if circuit )\D traverses a non-zero portion of b)\ o
Proof: Let )\p traverse a portion of b)\ . Adjust the orientation
oc o . :
of )\p such that Zip has a positive sign. Then all 2z s where ki €

ocC

{N,, ..., N_}, are all positive. Letall Z -, where \. € {\,, ..., A},
1 n & ip i 1 n

have positive signs. Let )\p be incident on )\1 and immediately traverse
a portion of a non-zero linear subtree. Then )\p cannot cease traversing
branches of )\1 until after it has traversed a portion of all circuits in
{)\1, a0 op )\n} , since to do so would imply either that Z?C is zero or has
negative sign, where )\i € {)\1, Co )\n} , or that there is a closed path
of tree branches. Since b)\ is the largest common linear subtree of the

set of circuits {)\1, e, )\n} , then )\p must pass through a non-zero

portion of b)\ .

Theorem 1. Let {)\1, o, )\n} be a set of n circuits. Then the
circuits can be oriented such that all Z?jc, where )\i R )\j € {)\1, R )\n} ,
have positive signs, 1f and only if all the circuits {)\1, Cey )\n} have a

non-zero common linear subtree.

Proof: Immediately known from direct application of Lemmas 1, 2,

and 3.
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Definition: The set {pE} and the matrix [pg] . Let a set of
circuits {)\a} exist such that all Z(i)jc are non-z¢ro and such that all the
signs of Z(i)jc can be made positive simultaneously, where )\i’ \N. € {)\a}.
Let {)\ﬁ} be another set of circuits, not necessarily disjoint with )\u. .
From the matrix 2Z°© delete all rows and columns i, where )\i is con-
tained in {)\ﬁ} but not in {)\a} . The set of circuits {pg} consists of the
union of all circuits {)\a} with all circuits {)\Y} , where the {)\Y} are
taken from the remaining circuits in z°% that are not in {)\a} such that
the following conditions hold:

1. Z(.).C is non-zero, where \., \. € {,0[3} .

ij i j a

2. The signs of all Z(i)jc can be made simultaneously positive,

where \., \. € {Pﬁ}
i J a

3. If circuit )\k ¢ {pE’} and the signs of Z;::jc are all positive,

where )\i’ N, € {pE }, then either some ZOF is zero or the signs of

J ki

Z(i)li: are not all alike for all i, or both.

When no rows and columns are to be delcted in this process, then we say
{)\ﬁ} = ¢ = the empty set. The matrix [ps] is the partition of z2°¢ such
that the circuits pertaining to the rows and corresponding columns of [pg]
exactly comprise {pE }; that is [pﬁ] is that partition of 2°¢, which des-
cribes onlynon-zerointeractions among the circuits {pg }. A particular
entry in [pE] will be denoted by [pi] . Note that in general {pg} is

1j
not unique.

While this {pE } concept may seem a bit abstruse, it is very simple.
The set of circuits {)\a} are seen to traverse a common, non-zero linear
subtree. This common subtree is composed of n

> 41 branches. Assume

that there is only one branch in common, bu. , and that there is only one
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other circuit, )\Y that also traverses ba and is not contained in {)\a};

then {pS} = {)\a} + xy. Now, assume that there are three branches in

b(1 = b,, bZ’ and b3. Also, assume that there are sets of circuits not

in {)\a}; that is, {)\123}, {)\12} , {)\23} s {)\1} , and {)\2} that respectively
traverse branches b1 b2 b3, b1 bZ’ b2 b3, b1 , and b2 (see Figure 22).

Then there are two unique sets {pg } as follows:

(P = 0+ gl + DLl + )
GPPY = D, + )+ )+ Bh,)

Figure 22. Example Circuits for {pg} Expansion.
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For another example of this {PE} concept, let {)\p} = ¢ and
consider a matrix 2°C. First, select a {)\a} set. Assume that the
number of circuits in {)\a} is a. Let the rows and columns of Z°C be
rearranged such that the first a rows and columns exactly correspond to
the set {)\u}; that is, {)\a} = {)\1, Nos oo \a} The only stipulation

placed on a is that a 2 1. The present state of z°® is shown in matrix (30).

+ o+ o+ 4 FT

+ o+ 4 +
{xa} + o+ o+ L4

+ o+ o+ .+

2°¢ = (30)
)\1 all +
)\2 all -
X3 + and -
)\4 +, -, and zero
L = ]

As shown in matrix (30), all the remaining rows not in {)\a} may be

separated into four mutually exclusive gioups: all rows i such that each

oc .
Z is for
1k

)\1: non-zero and has positive sign, where k € {)\a};

)\2: non-zero and has negative sign, where k € {)\a};

oc - 1
)\3: non-zero ard such that at least one zik has positive sign

oc . .
and at least one Z., has negative sign, where k € {)\a}.

PN

)\4: zero, where k € {)\a}.
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Now multiply all )\2 rews and columns by -1 and denote )\1 + )\2 by the
set {Xy}. The state of 2°¢ is now shown in matrix (31).
+ o+ o+ + _]
( + o+ o+ +
+ o+ o+ +
D3
L9
+ o+ o+ +
+ o+ o+ +
+ + + ... 4 (31)
{} M
Y S :
\
+ o+ o+ +
N | .
ij} and {)\4} L +, , and O

From matrix (31) it should be obvious that: (1) each row in {xy} is i.n-
cluded in at least one {pf} expansion; (2) no row in {)\3} U {)\4} is
included in any {p:} expansion; and (3) the contents of the partition M
determine the character of each possible {p:} expansion. Since an
expansion {p:} is in general not unique, let there be 7 such expansions
denoted by {ip:}, where 1 =1, 2, ..., n. The i[h expansion may then

be expressed by:

—~—
o
P o
—
I

A
J {\O.} + {IY} )
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and thus

! A
kj {iY} = {xY}

i=1

Note that for a given matrix, the set of expansions {ip:f } is unique.

In the example of Figure 22 there are two unique expansions
{1p5} and {ZPS }. Note that both expansions have circuits {)\a} and
{)\123} in common. To describe expansions whose only common member
is the defining set {)\a }, the following extension 1s defined:

Definition: a proper a-set. Let there exist n > 1 unique ex-
pansions {ipg}, where i =1, 2, ..., n. If [n\ {ipi} = {)\‘1}, then
{)\a} is a proper a-set. =1

Physically a proper a-set has definite significance. From the
definition of {PS }, and thus {)\a} and also LLemma 3, there exists a
unique non-zero linear subtree, say b(1 , which is the largest and is tra-
versed by all the circuits contained in {)\a} . To say that {\a} is a
proper a-set is equivalent to saying that {)\a} includes each and every
circuit that traverses b(1 in its entirety.

Lemma 4: There are no circuits other than those possibly con-
tained in {)\13} that are not contained in the set {pg } and that traverse
a portion of the largest linear subtree common to all the circuits {)\a} .

Proof: Immediately known from Lemma 3 and the definition of {;,E 3.

Lemma 5: [pﬁ] =z _+ zf.r), where ZQ‘) and z _are driving -
— a i P 1) 1) P
point impedances, and, in fact, z, is the sum of the impedances in the
largest linear subtree common to all circuits {pg} .
Theorem 2: There are )\.1 and )\j such that [pg]”is exactly the
1)

sum of the impedances and is the largest linear subtree that all circuits

of the set {pg} have in common.

e




Proof: Let Zp be the sum of the impedances of the largest linear

subtree having terminal nodes n, and n, common to all circuits {pg ).

Assume that )\i and )\j do not exist. Then by Lemma 5, each [pg]
(r)

z + Zi(_jr)' where z..

P 1)

thus superimposing nodes n, and n, . Since all the remaining entries

is non-zero. Subtract Zp from all entries [pp]

are positive, non-zero, there is another linear subtree common to ail
circuits contained in {pS} by Theorem 1; hence, a contradiction.
Lernma 6: Let the largest linear subtree common to the set of

circuits {)\a} be a single tree branch b . Then {pi} in unique.

Proof: Assume that {pg } is not unique. Then there 2re at least

two ditferent sets, {1pg} and {Zps }, where

{,eP)

D+ i)
and

{&pg}

b+ A}

By the assurnption that {1)\Y} 7( {ZXY} , there is )\Yi € {1)\\(} such that
)\Yi £ {ZXY}. Since bo. is the only branch common to {)\a}, then {)\Yi}
must circulate through ba; therefore, {)\Yi} € {Zpi } and hence a contra-
diction.

Theorem 3. Let {p:} be unique; then the largest linear subtree
traversed by all circuits {pf} is a single unique branch (Recall that ¢
is an empty set).

Proof: Call Zo. the largest linear subtree traversed by all circuits
{p:} . Assume that Zo. contains an interior node n, - Let Zo. be the

general linear subtree of the network; then a minor tree, Mo. , 1s attached

A




to n If no type A -1rcuits traverse a non zero portion cf Mﬂ . ther the
a )

circuits within M(1 coemprise a separahble part and thus M'1 mav be assura=d

to be attached to a terminal node of Z(1 If a type A <ircuit traverses a nor
zero portion of M(1 , then n, is a terminal node of Zq hence a contradiztion
Corollary 1. Let {pj} be unique. Then there are \j ard \1. such

that [pj’] is exactly the unique branch traversed bv al! ~ircuvits conta:ned
(5%}
a

1}
in
Corollary 2° There are \‘i and . such that p(b o is exactly
: Lo}
a unique branch of the retwork tree ij

Definition. A [OE] reduction. From each entry in the marrix
" {3" B P e B .
partition |go ] subtract | where i 1 are su-h that |- 15 &he
a “ad. . - {1 S S
ij
sum of all impedances in the largest linear subtree common to all circuits
{p;} The effect of this reduction :s to replace this largest linear sub*ree
whose terminal nodes we wil' call n, and n, bv a shert zarcu:* thus
superimposing its terminal ~odes n, and n, If B=¢ *hen largest
linear subtree’' can be replazed by unique tree branch.

The concept of a {3 expansion and a [:E] r>ductio~ form the

foundation for synthesizing a network with r circuits from a giver il
order open-circuit impedance matrix In performing an expansion a’ll
circuits having a comnion linear sub‘ree are determired 1~ appivirg a
reduction the common branches are removed and the remairing matrix
has its ‘urkrowns ' roduced bv ore Thris dual process is rzpeat~d cver

and over until the synthecis 1s compl *ted or until a coatradiction is =ncourteread

that renders the matrix unrealizable or n cir-uits

3.2 Realization of ZO:

The following realization procedure ~crstri~ts the network ~ircuits

69 .




for a given open-circuit impedance matrix. It does not construct the circuits
one by one, but instead progressively builds the dependent branches, or tree,
thus gradually building all circuits more or less simultaneously. Briefly,

it consists of four distinct phases. In the first phase, an arbitrary proper
a-set of circuits is selected. The common linear subtree of this a-setl then
becomes the general linear subtree. All possible expansions {ip:} yield
the complete set of branches that make up the general linear subtree; there-
fore, at the conclusion of the first phase, all the branches of the general
linear subtree are known and identified >y the particular circuits that traverse
each one. In the second phase, the branches of the general linear subtree
are placed in their propcr position. In general, the proper order is obtained
immediately from the branch-circuit identifications found in phase one. It
may, however, require information contained in the type B circuits to be
certain of their proper order. Nevertheless, at the conclusion of the second
phase, the general linear subtree is complete, and each type A circuit is
identified by its two points of incidence with the general linear subtree. In
the third phase, the minor tree branches and trunks that have two or more
type A circuits traversing them are developed. In effect this completes

the synthesis of all relations existing among type A circuits. Following
this, the rema.ning circuits, type B, are grouped according to the minor
tree through which each circulates. In phase four, the type B circuits are
found by applying the preceding techniques to the general minor trees, thus
completing the network. Like the admittance synthesis methcd, this pro-
cedure either terminates with the desired network or with a contradiction
rendering the matrix unrealizable by n circuits defined by n independent

branch currents
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. . A . ,0C
When a given open circuit impedance matrix. 2 15 based on a
tree, then that tree can be redrawn in several ways. each conforming to
the general tree form. This realization develops the network tree and the
: . . [ p .
graph frormn the matrix by means of successive applications of [Pa reductions
These applications successively develop a general tree form along with the

manner of circuit interactions occurring within the general tree branches

3 21 Phase 1

Let an open-circuit impedance matrix 2°° be given. Reorder the
rows and corresponding columns such that the first a rows and corresponding
cclumns form a partition of all non-zero entries with positive signs Ler
these first u circuits form a proper a-set. In general {pj)} is not unique.
however, 1f it is unique, let the common branch be the general linear sub-
tree and proceed to Phase 3 If {p;b} is not unique let z, denote the
largest linear subtree common to all circuits )\u. This linear subfree
2 will be produced branch by branch and will become *the general lincar
subtree. This Phase 1 is concerned with producing all the individuali
branches that make up z,

Begin by determining all sets {pf} and call the ith

~9
set {iru} =
{\a} + {\i} . Each set {ipf} determines a single unique branch of the

general linear subtree by Theurem 3, say z Call the intersection of a

£ e se i\, } [ N S }, tnen

set of the sets 1\1}‘ {\ir\jr\ Al ] . 1,\,””“ ALl e

)‘p traverses each of the urique branches Zi' Zj . . Conversely,
S Y > 1 53¢ i AL .

z,, Zj’ » 7y are raversed by \p if and only if \p € { inin n k}

Therefore, having determined the sets {ipS} and consequently z, and

{\i} associate with each zl all the circuits that traverse zi
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To understand this process further, complete a [1pi)] reduction.

As expected from the preceding discussion, this is accompanied by the
appearance of zero entries in the [1p:f] partition. When such a zero
appears in the ij entry of the [1PZ] partition, this obviously signifies
that )\.1 and )\j have as their cor~meon linear subtree the single unique
branch z, . Now, if there is a circuit )\k € {)\1} , such that the only

portion of the general linear subtree through which )\k circulates is 2y,

then call such a circuit )\z . The pre:ence of a '\"z circuit is signaled
1 1
by the appearance of zero in the ij entry, where )\J. € {)\1} and \, € {)\a}.

In general, if there is a >\j € {)x.i} such that a zero appears in the ij entry
with ,\.1 € {)\a}, then zeros will appear in all jk entries where )\k € {)\a}.

However, if zeros appear only in entries jk for )\J. € {)\1} and all )\k

contained in a proper sub-set of {)\a} , then z, must be an end branch

of the general linear subtree z, - This is true because ounly if zy is an

end branch of the general lincar subtree can a )\z circuit have more than
1
one branch in common with some )\k € {,\a}. Let the set of )\Z circuits

be called {)\Z }. Note that if », € {\_. } andif N, € {\.} for some
1 k Zi k 1

i # 1, then this is a contradiction rendering the matrix unrealizable by a
set of circuits based on co-tre -s. Since we know the accurate placement

of all circuits in {\Z } in so far as z, 1= concerned, e. g., through =z
1

1

only, they will be ignored in the remainder of this initial synthesis phase.

Note that at the conclusion of Phase 1, the set {)\Z }ois immediately known
1

sincc zy is the only branch that a<sociates and and all components of

{)\Z } with itself. Now, if a zero appears in the ij entry, where )\i, )\J. €

1
{)\1}, and all entries ik and jk, where X\ € {)\a}, are not zero, then

k

circuits )\i and )\J. are left with no common linear subtree. However, they

Py




both still circulats through a »or z-ro portion ¢f the romeairing general
linear subtree Consideration of thi« shows that all the -1rcuits 1invoivad

1 the appearance ¢f such zeros may be grouped into two sets such that for
each set all the members ha' 2 3 non w2ro portion of the remaining g=neral
iinear subtres 1in common and such that no membar of on-: set has anv no=-
zero branch in ¢common with any member of the other ¢cet Call c~= of
these two sets O ‘R'l and the other set {""‘Ll Call the remairung portion
of {\1}, those circuits that are rot involved with the agprearance of any
zeros, {)\1I,R}' To clarity this selection by zero occurrence further, =ee

matrix (32) and Figure 23 which together 1llustrats the occurrsnca of

o®

{

zeros following the [1 ] reduct.onn. Note that *hic illustritio~ assumes

that z, i3 notan end branch. If it wer= an end branch then only {'\"z }
1

‘RL or {)‘AL'I hut mot bath.
o o

z.‘_

oY

would be present together witk sither )

To conrinue this proc=ss carrv out a roduction  Orc=

again, this reductior 15 ac .ompanied by the agpzarance of »»ros 1n the

. oc .
[Zpi)] partition of Z Tk = entrance of these zeros mu=-* ~ow take into

ac-ount the preceding reduction. Th1s 1s a natura: zensequerce of the

possibly monempty intersection A\, N2 V. F:rst determine if there ars

1

anv \ loops and if c:0o whether =z
Z * 2

4

linear subtres. Re<all that the existenc: of anv » Tircniits 1s signaled

Py

1s an end branth cf *h= general

r,
[
by the appearance of zeros in the 1) satry. where ). ¢ Tl Yo« &

)

ard N € {‘}\'Zﬂ o forall k 7 2 New 1f any zercs appear :n the ij en'ry

1

2 A, e it )} azd @ FEAY } . then this ic ‘arance o
where § ¢t 0 oa d b Ceia 201" h 1& signais the app ‘ara C

a M_ _ circuit. that 1¢ a circwit that traverses the genz2ral l:near subtra-

z,55

ouly through branches 2, and 2z, and ro other branch  Obvicusiy this
! 2

means that Z ard <, have a comme~ rode ard mav be drawn a3s such
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1L, + + + + 0
{xiR} + + 0 + 0
{xi} {)\11_,} + 0 + + 0 B (32)
{xiLR} + + + + 0 B
0w, ) 0 0 0 0
1 -

Figure 23. Example of {p:} Reduction: (a) Before {1 pi)} Reduction,
(b) After {1pg} Readuction E_see matrix (32)-] .
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along with {\z1} {.‘A.ZZ}, and {\2122}. The remaimng circuits 1n {° Z}
may be grouped 1n three sets as was done for {\1} These sets are

{\ZR}, {\ }. and {\ZRL}' By convention these sets are to be labeled

it

such that one of the following two intersections are empty. {.\.1P} M {.\ZL}
or {'\11_,} ') {'\ZR} . Note once again that at the conclusion of Phase 1

the set {\ }oas immediately known since z and z, are the only two
Z1ZZ 1. Z

} with themselves and

branches that associate any component of {\. ;
447‘2

both zy and z, associate all components of {1\ } with themselves.

ZZZ

Continuing in this manner, consider the [_. pg] reduction Again,
i

this reduction i1s accompanied by the appearance of n2w zero entries in the

[

(S

ps] partition of Z  The rows of this partition nan be aordered such that
the partition takes the form shown in matrix (32) where {\‘R} = {\iR}

I 1 _ ! g
L')\iL‘} = {\iL}’ and {\Zl} = {.\Z V. In order to take into accounr all of

1

the preceding reductions {\; } is subdivided into
: 1

These are sets of circuits that traverse the general linear subtree only

through branches bi’ bi and b1, b, and b bi and b b. b

21 3 SRS 1
and b2 b1’ b1 and b3, 3 bi' bi' bZ and b3 and so forth respectively

These are determined by viewing the circuits as members of the possgibly

nonempty intersections {)'iﬁ 1} . {_\.1 A 2} {_\i 0 3}_ . {,\]. AO 2}

{\i N1 03}, > o d {\.1 N1020 3} , ..., and so forth respectively To
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review what is being done, it 1s worth while to look at the physical inter-
pretation of what is happening. When [1p§)] is reduced, zy is reduced
to 2 node as shown in Figure 23. This leaves four types of circuits in
[192)] . After each of the succeeding reductions, there are also four types
of circuits in [ipj] . It is necessary, liowever, to distinguish between tte
self’-circuitand sling type in order to position the branches properly within
the general linear subtree. It is the nonempty intersection (and hence the
timely occurrence of a zero) that determines the relative positions of the
branches.

This first phase in the synthesis continues until all the [ipi] have
been reduced. When this has been done, if Z Zi =2, then we proceed
to the second phase. In this case, at the concllusion of Phase 1 all ij entries
will be zero for all N {)\k} and some )\J. {)\a}' This indicates that
no remaining circuits traverse a non-zero portion of the general lirear
subtree. 1, however, Z z, ;t’ Za . then some branches ot the general
linear subtree remain tu ':)e determined This determination is accomplished
by forming anew .he {ip:} sets irom what remains of the reduced Z matrix,
and then repeating the foregoing procedure. When it is no lorger possible
to form a {0:} set, and yet the circuits {)\a} still comprise a pruper
a-set, then the largest remaining linear subtree common to all circuits
{\G } is itself the last branch in the general linear subtree. This is the
conclusion of Phase 1. All the branches in the general linear subtree and
all type A circuits have been obtained. Not only have they been obtained,
however. but in addition, their relative placement is, to a great extent,

determined by the manner in which the type A circuits are associated with

the branches. Specifically, what has been obtained is the totality of general




linear subtree branches with each branch identified by the totality of type A
circuits that traverse that branch.

Briefly, Phase 1 is as follows:

1. Select a proper a-set in the given 2°¢ matrix.

2. Form {ip:} = {)\a} + {)\i} from Zz°, where i =1, 2, . |, n.

3. Associate with z, each circuit that traverses z, .

4. Reduce [ipi)] for all i, where i=1, 2, ..., n.

5. Call ZOC' that matrix resulting when reductions have been
applied to 2°€.

6. Based on the same a-set, form {kp:} within ZOC‘, where
k:n+i,n+2,...,n+p.

7. Associate with 2z, each circuit that traverses =z

k ke

8. Continue until )\a is no longer a proper a-set, and then call

T
. . oc
the final reduced matirix Z .

3.22 Phase 2

In this phase the proper position of all branches Z.1 that make up
the general linear subtree, Za , will be determined. By doing this, the
two incident points of each type A circuit on the general linear subtree
will become evident simultaneously. At the conclusion of Phase 1, each
branch of the general linear subtree has associated with it all the type A
circuits that traverse it. This information, by itself, is normally sufficient
to order the branches. Let Z(1 be composed by n branches, Zi’ First,
order the branches such that it is possible for each to be traversed by its
associated circuits. Where it would be possible for a branch to take two

or more positions, divide the branch into the necessary number of parts to
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retain 21l pussibilities  This places 1n evidence all information regarding
the traversing of the type A circuits through the general linear subtree.
Next 1t is necessary to place in evidence the interactions between type A
oc’
circuits exterior tc the general lineur subtree. Note here that if Zij
| n
is non-zero where o XJ. € {)\a} £ {xi}, i #3, then circuits )\i
L ci=1
and )\i are incident on the general linear subtree at a common node.

Remeve such redundancies from the branch ordering to conform with this

information  Finally. it is necessary to place in evidence the secondary

interactions between type A circuits exterior to the general linear subtree.

oc’

Therefore, express as a direct sum of matrices that partition of Z

whose rows and corresponding columns comprise all type B circuits. In

effect. this reorders those rows and corresponding columns in the type B
oc’

partition of Z 7. and subpartitions it so thatallthe entries of off-diagonal

partitions are zero Each of those subpartitions is a minor tree or section

of 1t Call these partitions [i\M] and the corresponding circuits {i )xM} .
.
I Z?.(' and Z(lzf are non-zero where )\i and X\

1
|

| are type A circuits,

and where )\J. and \l are both members of the same set {r)\M}, then

circuits \.i and \k are incident on the general linear subtree at the saine
node. With this information the type A circuits are conclusively specified
At the end of this step, however, branches in the general linear subtree
mav still appear redundant. Such redundant branches may be erased at
will as the unique placement of those remaimning branches is immaterial
in the original Z matrix

Thus the two points of incidence of each type A circuit on the general
linear subtree have been specified Simultaneously all the branches of Z

have been properly ordered. 1n addition the minor trees and/or their sections
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have been placed in evidence by the subpartitions [i)\M] . Briefly, Phas= 2
i3 as follows:

1. Order the branches in as general a manner as possible so that
their placement allows the proper traversing of their associated circuits.

2. Use direct interaction among type A circuits exterior to the
general linear subtree to remove part of the redundancy introduced in step 1.
3. Use secondary interaction among type A circuits within the

minor trees to remove more of the redundancy.

4. Arbitrarily remove all remaining redundancy.

3.23 Phase 3

An example of the network at the conclusion of Phase 2 is presented
in Figure 24a. 1n this phase the remaining specification of type A circuits
as illustrated in Figure 24b is to be completed. This will involve definite
specification of most circuits as well as some indefinite redundant specifi-
cation that wiil be corrected in Phase 4. Indefinite redundant specification
arises when two type A circuits are incident to the same two nodes and
interact outside of the general linear subtree. In this case, it may be
impossible to determine how much of the common ''trunk'' branch is at
one incidence node and how much is at the other incidence node without
examining type B circuits. To complete this specification of type A circuits,

r
. . ( 29 o oc .
the off-diagonal terms in the {)\u} and {)\.1} partition of Z will
i=1

be used.

Let circuits .\.1 and )\j have a single common node of incidence

r
. . c .
on the general linear subtree at n.lj . Then Z(i)i is a trunk attached to
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Figure 24. Final Phases ot Compete Specification of Type A Circuits.
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node nij’ which both )\i and )‘j traverse. Generalizing this concept, if

T

Z(:j(' is non-zero, and if )\.1 and )\j each have an incidence node different

from those of the other, then add that branch to the network. When all such
r r

oc : : Gemd oc
Z.lj are operated on in this manner, the only rernaining non-zero Zij

will be those for circuits )\.1 and )\j traveling in parallel with each other.
For such remaining entries, divide the branch into parts, placing one part
at each of the two common incidence nodes. This places all type A circuits
in their most general proper position relative to each other and completes
their synthesis in so far as their interactions among themselves are con-
cerned. Briefly, Phase 3 transfers the information from off-diagonal
entries Z?jcr to the network. Note that, in effect, this is merely another

{pg} expansion and [pg] reduction, where a is now the trunk of a minor

tree section, and {)\ﬁ} is a set of type B circuits.

3.24 Phase 4

In Phase 2 the subpartitions [i)\M] were developed. Each of these
partitions relates interactions amoeng type B circuits within a particular
minor tree. In this phase each minor tree section is developed by con-
sidering the branches added in Fhase 3 as general linear subtrees and
applying {p:f} expansion-reduction techniques to uncover all circuits
traversing them. Continuing in this fashion, the network is completely
realized, or shown to be unrcalizable.

This is but one procedure that uses the {ps} technique. Many

variations will occur to the reader as he becomes familiar with the method.

As an example of the preceding, consider matrix (33):
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8 5 2 1 1 1 3 1 0 1
5 8 4 1 1 3 3 -2 3
2 4 9 3 1 -2 -2 3
1 4 3 5 3 -2 -2 06 -2 0
1 1 1 3 4 -2 0 0 -2 0
z°¢ = |1 3 3 -2 -2 0 -2 2 3 (33)
33 .2 -2 0 10 0 0 0
1 .2 .2 0 0 -2 0 8 0 -2
0 0 0 -2 -2 2 0 0 6 -2
1 3 3 0 0 3 0 -2 -2 8

Let Ny and X\, be the set {)\u}. By inspection, the expansions are

3y -

{190} = )\1. )\2, )\7 -z, , N\
¢y -

{Zpu} = )\11 KZ, )\31 )\4- )\5 - ZZ } (34)
oy .

apgd = My0 Rps Mg hg Mg = 24 y,

It is thercfore immediately known that \1, )‘Z comprise a proper a-set.

In addition it is immediately known that the circuits traversing Z1 and Z

2
are only ).1 and )\2, that the circuits traversing Z2 and Z3 are )\1, )\2,
and )\3; and that the circuits traversing Z1 and Z3 are only )\1 and )\Z'
The branches are given by

z, =295 =295 =3
i 17 2T
oc oCc _ _
ZZ ZH = 224 = =1 , (35)
_ ,0C _ ,o0cC _
237246 7 %110 !
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rocead ac follows:

- P

~»0C

Removing Zi’ ZZ' and Zy lrom 2.

(36)

ZOC

oy

3 -2 -2

5

3 3 -2 -2 6
0 -2 -2

1
0

0

0 -2 -2

0

0o -2 -2

3

3 -2 -2

0

0 -2 -2
-2 -2

0

1

aN]

0 -2 -2

0

9 -2 -2

3

~l

-2

-2
-2

2
-2
-2

2
0
-2

0
0

1

0 -2 -2

0

0 -2 -2

Z

remove 'Z,1

ZOC

remove Z‘2

remove Z 3
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In line with branch circuit identifications, the oniy possible branch orderings

. . . . oc .
are shown in Figure 25a. Next since Z is non-zero, and )\4 and \

47 7

have no portion of 2’.(1 in common, branch b1 and b2 must have a common
node. This concludes Phase 1 and 2, with the resulting structure pictured
-

. : . . . oc .
in Figure 25b. Next, examine the entries in Z pertinent tuv type A

circuits. This information is transferred from matrix (36) to matrix (37):

a0 0 0 0 0 0al
2lo3 2 0 0o 2 o2
3102 7 2 0 2 -22
400 2 4 2 -2 -20
5100 0 2 3 -2 00 (37)
6102 2 -2 -2 5 02
7100 -2 -2 0 0 70
1002 2 0 0 2 07

r__
==

Examining matrix (37) shows that:
1. )\1 interacts with no type A loops off Za;
2. )\3, )\4, A form a proper a-set;
3. )\6, )\5, )\4 formi a proper a-set; and

4. Ao LA )\3, \Z form a proper a-set.

This information yields Figure 25¢c. To f{inish the synthesis, return to
matrix (36) and treat the minor tree trunks as was done in Phase 1 and

Phase 2 This was done by expanding arcund each trunk as follows:

Step 1:

Ao, Aoy Ny = Z z -2 . (38)
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(b) i3 2> Z

(c) z,

(d)

Figure 25. Realization of Matrix (33). (a) Possible Order at End of
Phase 1. (b) Structure at End of Phase 2 (c) Structure
at End of Phase 3. (d) Structure with All Trunks Developed.

z, = 3, 25 = A, 23:1, z4f2,
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(39)
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Step 2:

(40)

(41)

0
0

5 2 0 0 -2
-2

2

0
0

2 00

0

7

-2 0 0

0O 0 0 -2

0

Thus remove Z5 from matrix (39), yielding matrix (41):

ZOC .

remove 24. 25

Step 3:

(£2)
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Thus remove 2Z 5

ocC

Step 4:

Thus remove Z

Step 5:

7

from matrix (41), yielding matrix (43):

30000001 0 0]
0 1
o 3
0 0 O
0 1
25 % | o 1
0 5
) Q 6
0 3 -2
0 7N
| r
{Px1> = hp Mg w 2o = Zig =t

from matrix (43), yielding matrix (45):

2
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(44)
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Thus remove 28 from matrix {45), yielding matrix (47):

B 1 -
3
q O
Zocr'z Z O 7T 7 11 (47)
4 “5 ‘e “7 “8 5
6
0O 1
i 3]

This process is shown in Figure 25. Since the remaining matrix is
completely reduced, the diagonal entries are the impedances of the in-

dependent branches, yielding the structure shown in Figure 26.

I I 3

Figare 26 Realization of Matrix (33).
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3.3 Specification of Arbitrary Entries

In the Y realization procedure, the question of arbitrary specif:.
cation was dealt with in a straightforward manner. Here, for the z°¢
realization, the problem is at presentnotas clear cut. Not only is there
a question of sign and magniiude as before, but in addition there is the
sign-less zero entry to be specified. As in the admittance case, the
realization of a portion of the whole matrix must conform to the realization
of the whole matrix. To state this another way, at any point in the real:i-
zazion, that which remains to be done must conform to what has already
been done. A constant awareness of this will provide for specitving arbitrary
entries as the realization develops.

To begin specification, note the state of the network at the conclusion
of Phase 2. At this stage of the procedure. all type A circuits are to have
been specified; therefore, it is logical to check the remaining circuits to
make sure that there are no type A circuits that have not been accountzd
for because of the presence of arbitrary entries At the conclusion of
Phase 2 it is possible to determine sets of two or more type A circuits
that traverse a common portion of the general lincar subtree, and that do
not have any common branches except those contained in the general linear
subtree. Let )\.1 and Xj be two such circuits. In this case. 1f there 1s

a circuit xk that is not contained in the set of tyve A circuits such that

ocC

Z. and Z°% are non-zero and such that the signs of 7°°¢ ZOC z7°¢.
ik jk ij ik jk
Z.O.c, Zc.).c, and ZO::' can be made positive simultaneously, then the Vi
i1 i ki kr

entries, where r is a type A circuit, must he adjusted so that \, is

K If

included as a type A circuit. The reasoning behind this is obvious. If

0 . N "
three ¢r more circuits {ke; traverse a common set of branches, {b }
: a




and if the largest linear subtree common to two or more of those circuits

is contained in {bc} and is also contained in the general l:near subtree,

then all circuits {)\e} must be type A circuits. In this manner the arbitrary
entries can be specified.

When a 2°% matrix is given with a large number of arbitrary entries.
such entries can be designated as + 0. The realization procedure may be
then more cunveniently approached by realizing a portion of the 2°% matrix
that is a concentration of specified entries. Following that realization, the
remaining circuits are added and arbitrary entries specified until the whole

is realized.

3.4 Remarks
This realization method for 2°¢ is different irom that for Y°°
Here no general sign matrix is presented. In yS© every entry has an
associated sign, while in 7.°¢ only about half the zeros can be assigned
a plus or minus. The remaining zeros have no sign associated with them.
The preceding realization procedure is preseunted as sufficient to
warrent further investigation. Except in the large-scale general case. the
procedure is not preferable to & '"common sense’' approach using the ex-

pansion-reduction technique. It is presented because in the general case

its termination is more readily visible. However, for a common realization

3

problem, a good understanding of the {p"” } expansion-reduction concergt is

el

by itself the more effective approach, since 1t is also directly applicable to
the realization of YSL matrices. In addition, most of the concepts and
methods in this chapter appear directly applicable to the mesh impedance

matrices, but are harder to prove.
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IV. MULTIPORTS AND RELATED TOPICS

. sC oc
4.1 Relations between Y /A

and Multipoerts

In the description of a network by an admittance or 1impedance matrix
it is important to know exactly how the matrix was obtained. This is neces-
sary because many characteristics of completz open-circuit and short-circuit
matrices are very different from those of multiport matrices.

The preceding discussions on anaiysis and synthesis were concerned

. . . . . sc .
with complete short-circuit admittance matrices, Y ~, and with complete

C_. both of nth order. ''Complete"

4 L . o
open-circuit irmmpedance matrices, 2
indicates that the originating network ic completely described by the responses

of n independent branch voltages, or tha* the originating network is compietely

described by the responses of n independent branch currents. The terms

v

"*short-circuit’'' and open-circuit indicate which network variables are
the responses and what form the equivalent excitations assurne. ''Short-
circuit'' refers to the fact that the response of the network is in terms of
independent branch voltages and Lo the fact that all cxcitations may be re-
placed by currant sources a-~ting in those independent branches. ''Open-
circuit’ refers to the fact that the response of the network is in terms of a
set of independent branch currents and to the fact that all excitations may be
replaced by voltage sources acting in those independent branches. It is very
important to realize that in these matrices, YSC and ZOC, the role of ex-
citation and response carnot be reversed without changing the network graph.
This can be seen by examining one independent branch in which the roles of
excitation and response are reversed (see Figure 27 and Figure 28). These

. S q sc
two figures show how a reversal of excitation and response roles in Y7 and
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oc : N
Z require that a new branch be added to contain the new scurce ex:itation.

If this new branch were not added the basic generalized branch definition
wculd be violated, since a new voltage source would parallel an impedance,
or a new current source would be in series with an admittance, thus violating
the general branch shown in Figure 27a and 28a.

This change i1n network graph accompanying the reversal of excitation
and response roles does not occur when the admittance or impedance matrix
1s viewed as an n port matrix. This 1s because the port matrix essentially
ignores the network topology and is concerned only with terminal behavior.

It describes the netwoik response only in so far as the terminal response
18 concerned and it demands that the excitation always occur at the specified

. . . oc sc .
terminals. If a graph is given for a network and Z and Y are viewed
as n-port impedance and admittance matrices. the role of excitation and
response rnay be reversed with requiring any change in the network grapkh.
As iliustrated in Figure 29 this is because each excitation by 1tself is con-
sidered ts be a separate network branch Because of this, the previous

. ,8C oc N
statement concerned with Y and Z excitation and response reversal
may be extended as follows
sc ; .

InY the response 1s 1n terms of a complete set of independent

branch voltages and the excitation is in terms ot equivalent current sources

a0 . oc o
located within the same 1irdependent branches: in Z the response is in
terms of a complete set uf independent branch currents, and the excitation
1s :n terms of equavalert veltage sources. If at a particular independent
branch the roles of excitation and response are reversed, then that reversal
is accompanied by defimite change in the network graph except in the isolated
cace where the network graph remains the same 1f and only if that independent

branch admaittance (:mpedance) is identically zero.
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Figure 29. Change in Network Perspective When z°¢ or Y®C Are Viewed

as n-Port Matrices: (a) 2°€ Independent Branch Viewed as a
Port, (b) YS¢ Independent Branch Viewed as a Port.

It should now be obvious that an nth order complete short-circuit
admittance matrix is automatically an n-port admittance matrix, that an
n " order complete open-circuit impedance matrix is automatically an
n-port impedance matrix, and that the converse definitely does not hold.

If Z and Y represent n-port matrices, this may be expressed as

Y°¢ = v 2°5 = z . (48)
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The necessary and sufficient conditions for the reverse to hold; that is,

Y - v3¢ z - 2°¢ (49)

is the existence of a network for which Equations (48) hold. One procedure
for determining the existence of such a network is presented in Chapter II
(admittance case) and Chapter III (impedance case). These two chapters
. q - o sc : oc
bring out two strong dissimilarities between Y and Y or Z and Z.
Most evident is the requirement that both the diagonal and the off-diagonal
; . sc oc¢ . o . .
entries in Y or Z must involve sums of driving-point functions
(therefore must be driving-point functions), and less evident are the de-
pendence relations of the entry sign and zero entry.
sc oc . . . T
In Y and Z equations, the independent variables (excitations)

are given in terms of the dependent variables (responses); that is

J n (50)
and

Vv , (51)

where E and I refer to voltage and current sources. and J and V refer
to current and voltage responses. Since the roles are interchangeable in
port equations, it is the port equations that are desirable in network analysis
because in them the dependent variables (responses) are expressible in terms
of the independent variables (excitations). Port equations exist in varying

degrees of completeness. The most complete admittance port equations are

J = [ZOC] E = YE , (52)

and the most complete impedance port equations are

1
TP [YSC] 1 = ySCg , (53)
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whenthese inversematrices exist. Existence of the inverse matrices requires
sc oc )
that det [Y | and det |[Z | be non-zero; or, equivalently, that for
sc . .
det |Y |, there existsatleastone network tree such that the product of its
) . . oc
generalized branch admittance is greater than zerc, and for det |Z7 |
there exists atleast one network co-tree such that the product of its gen-
. . . . . oc s8¢
eralized branch impedances is greater than zero. The matrix Y (Z27)
is complete since the response of any branch current (voltage) to any set of
source excitations is directly obtainable from simple algebraic combinations
oc

of the entries Y.. (ZS.C)

L . .SC ”0C
i A5 Their inverse matrices Y and Z 7, are,
el

however, generally of Jittle value as port equations thatgive responses of the
network in terms of excitations, since by so doning they effectively destroy

the network. This destruction should be clear upon considering Figures 30
and 31. In conjunction with this, let network N have b branches and n
nodes,and be connected. Then if Y°C is viewed as an (n-1) -port matrix,
the network has b independent branch currents; if viewed as a (b-n+1)-port

matrix, the network has b independent branch voltages.

4.2 Reduced Networks

The essential characteristic that excludes the consideration of most
. sc oc . . .
muliiport matrices as Y or Z matrices is that many response variables
. . . »0C
within the network are not determinable. The equations E = Z J and
sc . . .

I =Y V involve a complete independent set of 1 response currents and
voltages respectively. Assume, however, that only the first k of these

responses are of interest. It is then natural to eliminate the last n - k

variables as follows:
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f— i ] —
E, I T T
oC l ocC
Zkk | Zk, n*k
|
Ek ' Jk
Fret I Tiest
=0C oC
n-k, k : Zn—k,n-k
E | J
n 1 n
L. _ L i 1 L _
or
»OC oc
R e ] ,
oc oc = oc oc =0 oc
& - _ ~ 00 =
2y n-k <Zn-k,n-k> E-k1 = Zxn-k Zn-k,n-k> Cae o e ]
where

k+1

~498 -

(54)

ocC

* Zk,n-k Jn-k,i

(55)




and

5
T 1 I
Jn-k,i Jk+1
J
- 1o} et

Subtracting Equations (54) and (55) gives

QcC

-1 -1
oc B oc _ ,0C - CC oc
Ek,i - Zk,n-k(zn—k,n-k> En-k,i N Zkk Z'k,n-k<én—k,n—k/ Zn-k,k Jk.i

Rewriting this equation gives

-1
n _ Lo _J cc _ oc oc \ oc
Bt ™ Figr 7 B 7 %k Zk,n-k<z'n-k,n-k/ Dol (g
{
(50)
where
n ocC ocC =5
B ” ZR.n-k( n—k,n-k> Epkt
and
0 ) _ n
Fpeoq &2 q 2 B g

o : e g .
where Ek 4 Tepresents the new equivalent voltage excitations acting in the
’
first k independent branches. ‘I'he interpretation of E‘k y 18 significantly
2

difterent from E. Recall that E represents all excitations in the network
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replaced by an equivalent set of voltage excitations ir. the independent
branches. However, Ei 1 is a set of voltage sources in the first k
independent branches for the purpose of negating the effect of any sources
in the ''floating'' portion of the network on the first k response currents.
Therefore Ei’ | represents all excitations in the network replaced by an
equivalent set of voltage excitations in the first k independent branches

such that all excitations in the flcating branches are effectively zero. As

a natural consequence of this we assume En—k 1= 0, so that, for simplicity,
we may write

o oc oc oc = oc

E = = Z -

P T " Zk,n—k(zn—k,n-k> Zna,k Tk B0

Similarly, for YSC,
-1
! _ sc sc
K, 1 k, n-k( n-k, n—k> n-k, 1
n o c s sc -1 c 1
S (& S
p— - — = - - r \,'
ot "4t "1 " 51 ® Yk ™ Ykon-k Yn—k,n—k> Yn-k,kf 'k, 1
(58)

-1
- | - _ | .
oc oc oc oc
. Ze U &nopen. Yook | Yion-k
Lzoc—| I |____ _ ____|______ _ Yoc
- l ! !
oc oc ,oC oc
Zn—k,k | Zn-k,n-k Yn—k,k l Yn—k,n—k
i | i ) | Bl
(5%)
then
oc oc oc oc =5 oc =5
(4 o
Yk izkk - Zk,n-k<zn-k,n—k> A : (60)
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This process of allowing certain independent branches to float leads
to two types of matrices. 1f the remaining ndependent branches form a
single subtree of the original maximal tree, then the resulting matrix will
be called a complete multiport matrix. It :s complete because 1f the resulting
matrix has k ports, then these ports form a tree and therefore require only
k + 1 terminals. However, if the remaining independent branchkes form
several unconnected subtrees of the original maximal tree then the resulting
matrix will be called an incomplete multiport matrix, or simply a multiport
matrix.

The inclusion of multiterminal elements, which are matbematically
described by a complete multiport matrix 1n the discussion o» admittance
and impedance is a natural consequence of reducing the number ol response
voltages and currents described. The discussion {ollowing w:ill describe
network analysis of networks with muititerminal elements  This discussieon
assumes that sources are prasent ontv 1n the independent branches that are
not floating. This assumptior, as shown above, does not affect op=rations
or the Z or Y matrices: it only simplifies the interpretation of the excitation

source 2ctor. and as such does not affert the results

4 5 Network Analysis Irvolving Multiports
Let N be a natwork containing b branches and n nod=s¢  Let th=

n

3

odes be grouped intc three mutually exclusive sets n, n

Assume that no branch exists that is irncident on both an n rode and an

1

3 node (see Figure 32). Call a branch that is incident o an n. node and

i

2 and ng

n

an nj node bi’ . Then there exist five types of branches in N: b b
J

1L 22

: - . ‘ i1 e ] 1ve
b33 b12. and b23 In general, a maximal tree ot N will contain all t:v




—— ALLOWABLE
———--UNALLOWABLE

Ny nodes nznodes n, nodes

Figure 32. Example of Allowable and Unallowable Branches.

types of branches. Let a maximal tree be selected such that all b22 tree

branches form a single subtree, such that all b b and b tree

22 711 12

branches taken together form a single subtree, and such that all b b

22’ T3%

and b23 tree branches taken together form a single subtree. Based on
this maximal tree, the set of independent branch voltages, {V}, may be

ordered such that

{v} = {vy v V., V Y

20 T AR S 3 Vk+1""’ n—i} ’
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where

{v,, ..., V.} are response voltages across the b and b branches,
1 J 11 12
1 .
{Vj+1’ nao0g Vk j are response voltages across the b22 branches, and
{Vk+1’ Cy Vn-i} are the response voltages across the b23 and b33
branches.

Since no b13 branches exist, and therefcre no corresponding independent
branch voltages from an n, node to an n, node, the complete short-circuit

admittance matrix takes the form of matrix {62):

: I
| I
P, A | o
. ]
L IR P IO
j+1 l ]I
vS€ - : A, | ¢ | B (62)
: i_ |
T JI[
' |
0 l Rt | P3
n-1 _ l | N
If the variables Vk+1’ N Vn_1 are allowed to '"float'' and are thus re-

. . . - SC
moved from the admittance equations, the matrix Y becomes a complete

multiport admittance matrix Y, which is,
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v - ___{,________._ . (63)

In matrix (62) and matrix (63), P1 is concerned solely with b11

and b12 branches; A is concerned solely with b branches, P, is

12 3

concerned solely with b33 and b23 branches; B 1is concerned solely

with blj branches; and C 1is concerned with b b b b ard

110 7420 T22° U223

b33 branches. Let C be writteaas a sumin C = C1 + CZ’ where C, is

concerned solely with b11, bi?_’ and bZZ branches, and CZ is concerned

solely with b

p— -_ _‘l
A
P1 A \l ’Pi A 0 0
Y = = +
'A C—BP'iB A @ 0 C Bp’iB
L t S it t 1 2 3 Tt
{64)
=Y, + Y3 ,
where
P1 A
'xi = ,
LAt \41 g
0 0 h
Y. = ) (b5)
> -1
0 CZ-BP Bt

Now let N be represented as a union of two networks 1\1'1 U N where N,

3.‘

and N3 have no common non-zero branches and have the set of n for

2
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33 b23, and bZZ branches. Then, matrix (63) can be writ.er as




common nodes. The specific branches in N, are the b

1 11* Py2» 2nd by,

branches that appear in C, ; the specific branches in N, are the b3

3 3
b23, and bZZ branches that appear in C3. Parallel branches in bZZ must

be allowed.

With respect to Yi’ note that if all the branches in N, are removed

2

from N (thatis, all branch admittances in NZ are set equal to zero) then

matrix (62) becomes

B2 B | o Y, | o_l

Y>© = | = l—— —- (66)
A, Cp | oo o | o_]
—_————
0 o | o

Therefore Y, is actually the complete short-circuit admittance matrix

of N that is,

1 >

1 N . (67)

With respect to Y3 , note that if all the branches in N1 are removed from

N, then matrix (62) becomes

0 0 0
sSC
Y = 0 C2 B ,
0 Bt IF’3
and if the variables Vk+1’ o, Vn_1 are allowed to float, then matrix (63)

becomes
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(68)

where YI(\:]Mp = C? o BP;1 Bt is the complete multiport admittance matrix
3 2

for network N3 where all the b23 and b33 independent branch voltages

are floating. Thus matrix (64) becomes

I o 0
Y = Y;C + Y, = Y;C + . (69)
1 : 1 CMP
0 Y
g

Equation (69) is merely the multiport admittance matrix for a network N
intc which a multiport network N3 has been inserted. The 1mportant

restrictions here are that the admittance matrix for the multiport I\I3 be
complete, and that the corresponding ports of N1 into which it is piugged
form a single subtree of the maximal tree of N1 .
The impedance development follows the same text as the admittance

development with the natural substitution of dual quantities. After th;-

substitution, thke following dual equation results:

0 0
Z = z;’f +2, = ZIO\]C + . (70)
1 1 CMP
0o Zz
Ny
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With reference to Equations (64) and (69), the only portion of Ys,c

)

that is affected is C1 . A careful analysis of this sho vs that only the entry
mag:.itudes are aftected; that is, the signs of C1 are identical to the signs
of C,+ C, - BF’;1 B, . [n addition, one should observe that the common
problem of circulating currents is nonexistant in this type of connection;

that is, any ''circulating currents, '’ if they exist, are automatically taken

care of throughout the process described in Section 4. 3.
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APPENNDIX A: EXPLANATION OF TERMS

Primary Axiom: If M 1is an arbitrary finite or infinite collection of els

ments, and if to each (unordered) pair (A, B) of elements in M, a finite or
iafinite integer MAB = MBA 2 0 is assigned such that for each A at least
one MAB is non-zero. Call this a graph, which designates the elements
of M as nodes and in which any two nodes A and B are joined by MAB
branches. This axiom is used in this study only for the case where M and
MAB are iitite,

Subgraph: If the nodes of graph Gi are at the same time nodes of gragh G

and if the uvranches of graph G, are likewise the branches of G  *hen G,

is a "'subgraph' of G.

Incidence: If a branch AB terminates on a node A, then that node and

branch are ''incident'' to one another.

LCegree. The number of branches that are incident on a node P of a grapn

G 1is the ''degree'' of P in G.

Branch Sequence. If cne can enumerate all the branches of a (finite; graph

in a sequence of the form,

AB, BC, CD, ..., KL, LM (7 1)

where each node and each branch can occur arbitrarily (finitely) often the

graph is called a ''branch sequence.'' When A # M call the branch
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sequence ''cpen;' when A = M, call it '""closed.'' If a branch occurs in
Fquation (71) n-times, then call n the ''multiplicative index'' or ""multi-

plicity'' of the branch with reference to the branch sequence.

Branch Train: If no branch occurs twice in Equation (71), then call the

branch sequence a ‘'branch train'' (open or closed). If, in addition, the
points, A, B, ..., L, M, are collectively different from one another, then
call the open branch train a "'path;'"" if A =M, but A, B, ..., L collectively

differ from one another, call the closed branch train a '‘circuit. '’

Connected Graph: 1f a path exists between each pair (A, B) of nodes in a

graph G, then call G a ''connected graph."

Tree: 1l G1 is a connected subgraph of G, such that all the nodes of G

are contained i1 G, and such that no circuits in G1 exist, then call G

1 1

a ''tree'' with respectto G.

Co-Tree: If G1 is a tree with respect to G, then call all the branches

of G not contained in G1 the complement of G,1 , or ''co-tree. "’

9hord: Call a branch of a co~tree a '"‘chord. "'
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APPENDIX B: MAXIMUM NUMBER OF BRANCHES [N PLANAR GRAFH

Through a straightforward applization of Euler's formula wh::h
relates the number of taces, edges, and verticies for a simple polyhedron
one may surmise that the maximum number of branches in an n node planar
graph is 3n-6. Since there is some question a3 1o whether this corsritures
a valid proof, the following proof, which relies on Kuratowski's rwo basic
nonplanar graphs, is offered. Three assumptions are maae:

i} A gravh 1s composed of branches and nodes.

ii) A branch always terminates on a node at both ends and do=s ro!
terminate on the same node at both ends.

111) Given any two nodes, there exists at most one branch terminating

on those two nodes.

Theorem- If a graph G contains n nodes zid b branches and :s said tn

be planar, then for n>3, b< 3n - 6.

Proof. The maximum number of unique branches in any ithree =node graph
2
.. n -n . . .
n=3 is > = 3 = 3n.- 6 and ary comb:narion ot those brarck=s s

trivially planar (see Figure 33a).

The maximum number of unique branches in any four.ncd= gragh

2
. -n . . .
n=4 is — = 6 = 3n -0, and any combination of those branches is

trivially planar (see Figure 33b).

Assume a planar graph has b =3n -6 +a for n25, o >0
Since a graph is planar if and only if every subgraph is planar it wil:
suffice to erasec any o - 1 branch and show that the remaining graph G

having n nodes and 3n - 5 branches is nonplanar. For G' there exists
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(f)

Figure 33 Examples of Geometrical Construction Used in Proof.
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@t least one node, no, with five or fewer branches terminating on it If
not, there would be at least tn/2 = 3n branches in G conrtrary to con
struction

Case 1: If ng has zero branches terminating on it, erase g and
threc arbitrary branches in G'.

Case 2 If n_ has one branch b terminating on it erase =

O 01 )

and br,1 and two other arbitrary branches in G

Case 3: If ng has two branches b01 and bOZ terminating on n
erase n . bOl’ bOZ’ and one other arbitrary branch in G'.

Case 4. If n has three branches bOi' bOZ' and b03 tarminat.ng
on it, erase no, b01, bOZ" b03

- 5. - ] o NaavA A -
Case 5: If n, has four branches b01 bOZ' b03= b terminating

04

on n at one end and on ni, n n and n, at the other end respact ve'v
)

2t 3

then there exists a pair of nodes n, and nj (where 1.j - 4.2 3 4

s

o0
0

such that there is no branch bij connecting that pair of nodes in 7
this were not the case, cach of tne five nodes wowid be connected to ~arch
of the other four nodes and thus the subgraph composed of the five nod: ¢
and their connectirg branches would constitute Kuratowski‘s firs* has:=

nonplanar form thas requiring G' to be nonplanar. Erase n bO’ b0£

b03, b04’ and add branch bij such that the planar characteristic i< not

altered. This is possible as follows Let 1 -4 j -2 Erase bO% and

b04 Now replace the chain

9| by the branch b ‘has rot

1
Porr o0 Vo2

altering the planar characteristic of G' (see Figure 33d)

12

Case 6. If n has five branches b01, bOZ' . b05 terminating

on n at one end and on 1 n

PEERLS TR P at the other end respectivolv

then there exist three different pairs of nodes n, and nj Ny and n

-




Y 1 .: ) » = ) 2) ceey ’ i ) £
and n and n (where i, j, k, m, n 1 5, when i #j, k#j,
m #n, and either m =i with n#k, or m =j with n #1i,k), such that

there are no branches bi 0 bkj’ and bmn cornecting those pairs of nodes
J

in G'. If this were not the case, then the six nodes no, Ny, <oy n5 couid

grouped into two sets of three each with the property that there would exist
a branch from each node in one set to each node in the other sct and vice
versa. This comprises a definition of Kuratowski's second basic nonplanar

graph, thus requiring G' to be nonplanar. Erase node n_, branches b01,

b Kj’ and bmn such that

02" bOS’ and add two of the branches bij’ b

the planar characteristic of G' is not altered. This is possible in a manner

similar to the method indi:ated in Case 5. ILet i=1, j=2, k=3, If

m =3, n= 4, erase branch b05 and replace the chain b01, no, b()2 by

branch biZ’ and the chain b04, n_, b03 by the branch b43 (see Figure 1e).

If m=2, n=4, erase branches b and b and replace the chain b

05 04 oy

n_, bOZ by the branch b12, and the chain b03, no b02 by the branch b23
{see Figure 33f).

In all the preceding cases let the resuitani subgraph of G' he G''.
Then G''" has n-1 nodesand 3n -5 -3 =3(n-1) - 5 branches. Let
n-1=n'" Then G" has n' nodes and 3n' - 5 branches. Continue this
process until n =5 and let this remaining subgraph of G' be called GS.
Now GS has five nodes and 15 - 5 = 10 branches. A graph with five nodes
and ten branches must have each node connected to every other node and
hence is Kuratowski's first basic nonplanar graph. Since G5 is nonplanar,
G must be nonplanar, resulting in a contradiction.

The equality in the theorem follows from the following construction.

Place three nodes on a sphere. Add the three unique branches to the graph.
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Add a4 node !t must fall within a ‘'triangle’' and thus there are throe
branches that may be added in a planar manner Add these three branches
Add another node, ..., etc o construct a planar graph containing n

nodes and b = 3n - 6 branches.

Corollary: It a plarar graph with n 2 3 nodes and 3n - 6 branches is

mapped on a sphere, the only existing loop with no branches appearing
within it {or without it, as the caze may be) is a loop contairing three nod-=

and the three unique branches connecting them.

Proof. [If there were four or more nudes in the loop, it would be possib’e
to add one branch in a pianar manner thus bringing the tota! number of

brancihes to 3n - 5, resulting in a contradiction.
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